Properties

Label 2-4704-1.1-c1-0-61
Degree $2$
Conductor $4704$
Sign $-1$
Analytic cond. $37.5616$
Root an. cond. $6.12875$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·5-s + 9-s + 11-s + 4·13-s − 3·15-s − 4·17-s − 8·23-s + 4·25-s + 27-s − 7·29-s + 11·31-s + 33-s + 4·37-s + 4·39-s + 4·41-s + 2·43-s − 3·45-s − 2·47-s − 4·51-s − 11·53-s − 3·55-s + 7·59-s − 10·61-s − 12·65-s − 10·67-s − 8·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.34·5-s + 1/3·9-s + 0.301·11-s + 1.10·13-s − 0.774·15-s − 0.970·17-s − 1.66·23-s + 4/5·25-s + 0.192·27-s − 1.29·29-s + 1.97·31-s + 0.174·33-s + 0.657·37-s + 0.640·39-s + 0.624·41-s + 0.304·43-s − 0.447·45-s − 0.291·47-s − 0.560·51-s − 1.51·53-s − 0.404·55-s + 0.911·59-s − 1.28·61-s − 1.48·65-s − 1.22·67-s − 0.963·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4704\)    =    \(2^{5} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(37.5616\)
Root analytic conductor: \(6.12875\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4704,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \)
11 \( 1 - T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 7 T + p T^{2} \)
31 \( 1 - 11 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 + 11 T + p T^{2} \)
59 \( 1 - 7 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 11 T + p T^{2} \)
83 \( 1 - 11 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.984331877365611098322205043752, −7.47550962443046423122867307670, −6.48923992128165791411727457072, −5.96251327588168626685822102926, −4.57469865580799387365402434132, −4.11507132647141149122813982159, −3.50490904927474427804969626521, −2.53078320913080985896661665550, −1.37769040801800048545486958028, 0, 1.37769040801800048545486958028, 2.53078320913080985896661665550, 3.50490904927474427804969626521, 4.11507132647141149122813982159, 4.57469865580799387365402434132, 5.96251327588168626685822102926, 6.48923992128165791411727457072, 7.47550962443046423122867307670, 7.984331877365611098322205043752

Graph of the $Z$-function along the critical line