Properties

Label 2-4732-1.1-c1-0-54
Degree $2$
Conductor $4732$
Sign $-1$
Analytic cond. $37.7852$
Root an. cond. $6.14696$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.44·3-s + 3.44·5-s + 7-s + 2.99·9-s − 6.44·11-s − 8.44·15-s + 2.44·17-s − 0.550·19-s − 2.44·21-s + 3.89·23-s + 6.89·25-s − 5.89·29-s − 3.44·31-s + 15.7·33-s + 3.44·35-s + 8.44·37-s − 10.8·41-s + 43-s + 10.3·45-s − 3.44·47-s + 49-s − 5.99·51-s + 1.89·53-s − 22.2·55-s + 1.34·57-s − 14·59-s − 2·61-s + ⋯
L(s)  = 1  − 1.41·3-s + 1.54·5-s + 0.377·7-s + 0.999·9-s − 1.94·11-s − 2.18·15-s + 0.594·17-s − 0.126·19-s − 0.534·21-s + 0.812·23-s + 1.37·25-s − 1.09·29-s − 0.619·31-s + 2.75·33-s + 0.583·35-s + 1.38·37-s − 1.70·41-s + 0.152·43-s + 1.54·45-s − 0.503·47-s + 0.142·49-s − 0.840·51-s + 0.260·53-s − 2.99·55-s + 0.178·57-s − 1.82·59-s − 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4732 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4732 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4732\)    =    \(2^{2} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(37.7852\)
Root analytic conductor: \(6.14696\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4732,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + 2.44T + 3T^{2} \)
5 \( 1 - 3.44T + 5T^{2} \)
11 \( 1 + 6.44T + 11T^{2} \)
17 \( 1 - 2.44T + 17T^{2} \)
19 \( 1 + 0.550T + 19T^{2} \)
23 \( 1 - 3.89T + 23T^{2} \)
29 \( 1 + 5.89T + 29T^{2} \)
31 \( 1 + 3.44T + 31T^{2} \)
37 \( 1 - 8.44T + 37T^{2} \)
41 \( 1 + 10.8T + 41T^{2} \)
43 \( 1 - T + 43T^{2} \)
47 \( 1 + 3.44T + 47T^{2} \)
53 \( 1 - 1.89T + 53T^{2} \)
59 \( 1 + 14T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 - 6.89T + 67T^{2} \)
71 \( 1 + 12.4T + 71T^{2} \)
73 \( 1 + 11.2T + 73T^{2} \)
79 \( 1 + 2.10T + 79T^{2} \)
83 \( 1 - 4.34T + 83T^{2} \)
89 \( 1 - 11.4T + 89T^{2} \)
97 \( 1 - 10.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75395021130058667376319997148, −7.12061691987041034387896991583, −6.09739354044974815026020604864, −5.77496711167120305668973535158, −5.11058702668511010964885646170, −4.75776695921965735760172273127, −3.15902455871694063621466031184, −2.24642756074403717755709477469, −1.32080374481205256579412918217, 0, 1.32080374481205256579412918217, 2.24642756074403717755709477469, 3.15902455871694063621466031184, 4.75776695921965735760172273127, 5.11058702668511010964885646170, 5.77496711167120305668973535158, 6.09739354044974815026020604864, 7.12061691987041034387896991583, 7.75395021130058667376319997148

Graph of the $Z$-function along the critical line