Properties

Label 2-4732-1.1-c1-0-40
Degree $2$
Conductor $4732$
Sign $-1$
Analytic cond. $37.7852$
Root an. cond. $6.14696$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.167·3-s − 3.79·5-s − 7-s − 2.97·9-s + 2.86·11-s − 0.635·15-s + 1.96·17-s + 7.08·19-s − 0.167·21-s − 5.54·23-s + 9.40·25-s − 1.00·27-s − 6.34·29-s + 8.34·31-s + 0.479·33-s + 3.79·35-s + 9.56·37-s − 8.01·41-s + 3.12·43-s + 11.2·45-s − 5.13·47-s + 49-s + 0.328·51-s + 0.726·53-s − 10.8·55-s + 1.18·57-s + 3.32·59-s + ⋯
L(s)  = 1  + 0.0966·3-s − 1.69·5-s − 0.377·7-s − 0.990·9-s + 0.863·11-s − 0.164·15-s + 0.476·17-s + 1.62·19-s − 0.0365·21-s − 1.15·23-s + 1.88·25-s − 0.192·27-s − 1.17·29-s + 1.49·31-s + 0.0834·33-s + 0.641·35-s + 1.57·37-s − 1.25·41-s + 0.476·43-s + 1.68·45-s − 0.748·47-s + 0.142·49-s + 0.0460·51-s + 0.0997·53-s − 1.46·55-s + 0.157·57-s + 0.432·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4732 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4732 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4732\)    =    \(2^{2} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(37.7852\)
Root analytic conductor: \(6.14696\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4732,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
good3 \( 1 - 0.167T + 3T^{2} \)
5 \( 1 + 3.79T + 5T^{2} \)
11 \( 1 - 2.86T + 11T^{2} \)
17 \( 1 - 1.96T + 17T^{2} \)
19 \( 1 - 7.08T + 19T^{2} \)
23 \( 1 + 5.54T + 23T^{2} \)
29 \( 1 + 6.34T + 29T^{2} \)
31 \( 1 - 8.34T + 31T^{2} \)
37 \( 1 - 9.56T + 37T^{2} \)
41 \( 1 + 8.01T + 41T^{2} \)
43 \( 1 - 3.12T + 43T^{2} \)
47 \( 1 + 5.13T + 47T^{2} \)
53 \( 1 - 0.726T + 53T^{2} \)
59 \( 1 - 3.32T + 59T^{2} \)
61 \( 1 + 14.8T + 61T^{2} \)
67 \( 1 - 14.6T + 67T^{2} \)
71 \( 1 + 2.70T + 71T^{2} \)
73 \( 1 + 4.23T + 73T^{2} \)
79 \( 1 + 2.65T + 79T^{2} \)
83 \( 1 - 13.9T + 83T^{2} \)
89 \( 1 + 8.85T + 89T^{2} \)
97 \( 1 + 4.55T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.958733391926956097378525364844, −7.40869244487193310643713478734, −6.53726773308099305724355325067, −5.79256754604070019899468483674, −4.87294923426645210149408240002, −3.94721556506543954386653799468, −3.46322602143499718379446960527, −2.71815235475963988392048400142, −1.12107344993391167601854630677, 0, 1.12107344993391167601854630677, 2.71815235475963988392048400142, 3.46322602143499718379446960527, 3.94721556506543954386653799468, 4.87294923426645210149408240002, 5.79256754604070019899468483674, 6.53726773308099305724355325067, 7.40869244487193310643713478734, 7.958733391926956097378525364844

Graph of the $Z$-function along the critical line