L(s) = 1 | + (0.541 + 1.64i)3-s + (−1.25 − 1.84i)5-s − 3.29·7-s + (−2.41 + 1.78i)9-s − 2.51i·11-s − 4.65·13-s + (2.35 − 3.07i)15-s − 3.69·17-s − 0.828·19-s + (−1.78 − 5.41i)21-s + 2.61i·23-s + (−1.82 + 4.65i)25-s + (−4.23 − 3.00i)27-s + 6.08·29-s − 1.17i·31-s + ⋯ |
L(s) = 1 | + (0.312 + 0.949i)3-s + (−0.563 − 0.826i)5-s − 1.24·7-s + (−0.804 + 0.593i)9-s − 0.759i·11-s − 1.29·13-s + (0.609 − 0.793i)15-s − 0.896·17-s − 0.190·19-s + (−0.388 − 1.18i)21-s + 0.544i·23-s + (−0.365 + 0.930i)25-s + (−0.815 − 0.578i)27-s + 1.12·29-s − 0.210i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.866 + 0.499i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.866 + 0.499i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0173744 - 0.0648815i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0173744 - 0.0648815i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.541 - 1.64i)T \) |
| 5 | \( 1 + (1.25 + 1.84i)T \) |
good | 7 | \( 1 + 3.29T + 7T^{2} \) |
| 11 | \( 1 + 2.51iT - 11T^{2} \) |
| 13 | \( 1 + 4.65T + 13T^{2} \) |
| 17 | \( 1 + 3.69T + 17T^{2} \) |
| 19 | \( 1 + 0.828T + 19T^{2} \) |
| 23 | \( 1 - 2.61iT - 23T^{2} \) |
| 29 | \( 1 - 6.08T + 29T^{2} \) |
| 31 | \( 1 + 1.17iT - 31T^{2} \) |
| 37 | \( 1 + 1.92T + 37T^{2} \) |
| 41 | \( 1 + 8.59iT - 41T^{2} \) |
| 43 | \( 1 - 6.01iT - 43T^{2} \) |
| 47 | \( 1 + 2.61iT - 47T^{2} \) |
| 53 | \( 1 + 4.59iT - 53T^{2} \) |
| 59 | \( 1 - 2.51iT - 59T^{2} \) |
| 61 | \( 1 - 8.48iT - 61T^{2} \) |
| 67 | \( 1 + 3.29iT - 67T^{2} \) |
| 71 | \( 1 + 7.12T + 71T^{2} \) |
| 73 | \( 1 + 6.58iT - 73T^{2} \) |
| 79 | \( 1 - 16.4iT - 79T^{2} \) |
| 83 | \( 1 + 9.37T + 83T^{2} \) |
| 89 | \( 1 - 5.03iT - 89T^{2} \) |
| 97 | \( 1 - 2.72iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45394047295067281288109194764, −9.619855224811675126337806790602, −8.974183766632125500670030268166, −8.168598834390323976057172095660, −6.97704348593018942491172366455, −5.71021782446190454005226029393, −4.71284630556357275709714077327, −3.76677137715374749172955761093, −2.70943155127400307901055441939, −0.03598072663752730332199704156,
2.35437601837322649655545970347, 3.14442197958374586761624721747, 4.54219611675866452836130354221, 6.25094086468892190587100224204, 6.85969774804129167551762153445, 7.47122189964934202438616711932, 8.564892667112374209662008406804, 9.632037196357456112018785006948, 10.38551169155033782404740794961, 11.56289756431082395811209772022