L(s) = 1 | + 6·3-s − 10·5-s + 4·7-s + 27·9-s + 40·11-s − 24·13-s − 60·15-s + 32·17-s + 116·19-s + 24·21-s − 12·23-s + 75·25-s + 108·27-s + 148·29-s + 76·31-s + 240·33-s − 40·35-s + 280·37-s − 144·39-s + 572·41-s + 520·43-s − 270·45-s − 340·47-s + 130·49-s + 192·51-s + 524·53-s − 400·55-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.894·5-s + 0.215·7-s + 9-s + 1.09·11-s − 0.512·13-s − 1.03·15-s + 0.456·17-s + 1.40·19-s + 0.249·21-s − 0.108·23-s + 3/5·25-s + 0.769·27-s + 0.947·29-s + 0.440·31-s + 1.26·33-s − 0.193·35-s + 1.24·37-s − 0.591·39-s + 2.17·41-s + 1.84·43-s − 0.894·45-s − 1.05·47-s + 0.379·49-s + 0.527·51-s + 1.35·53-s − 0.980·55-s + ⋯ |
Λ(s)=(=(230400s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(230400s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
230400
= 210⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
802.074 |
Root analytic conductor: |
5.32174 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 230400, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
5.360706636 |
L(21) |
≈ |
5.360706636 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−pT)2 |
| 5 | C1 | (1+pT)2 |
good | 7 | D4 | 1−4T−114T2−4p3T3+p6T4 |
| 11 | C2 | (1−20T+p3T2)2 |
| 13 | D4 | 1+24T+3734T2+24p3T3+p6T4 |
| 17 | D4 | 1−32T+2846T2−32p3T3+p6T4 |
| 19 | D4 | 1−116T+16278T2−116p3T3+p6T4 |
| 23 | D4 | 1+12T+23566T2+12p3T3+p6T4 |
| 29 | D4 | 1−148T+41390T2−148p3T3+p6T4 |
| 31 | D4 | 1−76T−4098T2−76p3T3+p6T4 |
| 37 | D4 | 1−280T+100806T2−280p3T3+p6T4 |
| 41 | D4 | 1−572T+216422T2−572p3T3+p6T4 |
| 43 | D4 | 1−520T+213750T2−520p3T3+p6T4 |
| 47 | D4 | 1+340T+100670T2+340p3T3+p6T4 |
| 53 | D4 | 1−524T+337454T2−524p3T3+p6T4 |
| 59 | D4 | 1+552T+435478T2+552p3T3+p6T4 |
| 61 | D4 | 1−628T+163422T2−628p3T3+p6T4 |
| 67 | D4 | 1−168T+286982T2−168p3T3+p6T4 |
| 71 | D4 | 1+1248T+1053742T2+1248p3T3+p6T4 |
| 73 | D4 | 1−908T+723654T2−908p3T3+p6T4 |
| 79 | D4 | 1+1052T+1223358T2+1052p3T3+p6T4 |
| 83 | D4 | 1−40T+938150T2−40p3T3+p6T4 |
| 89 | D4 | 1−828T+857734T2−828p3T3+p6T4 |
| 97 | D4 | 1+316T−671034T2+316p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89195999420503365865128832469, −10.13254441819733875365628237018, −9.848017801791531731264736708663, −9.436387704973736674137603408515, −8.843653158631719744454767642130, −8.750249254305893253716540901777, −7.84063531446713307099307528031, −7.82974908836104763408757624992, −7.26295291946146576499045064391, −6.97944477624608067420526082003, −6.07212395300377907053598849885, −5.81501618418828311382857964648, −4.66855025925024018782452245963, −4.61855209234005759330070485959, −3.85729975159760863567950790838, −3.47336047385439846872753620141, −2.75729727742228247318676678477, −2.32746941148447204563904868637, −1.13623247091394193554145993441, −0.841081131810377554802056908417,
0.841081131810377554802056908417, 1.13623247091394193554145993441, 2.32746941148447204563904868637, 2.75729727742228247318676678477, 3.47336047385439846872753620141, 3.85729975159760863567950790838, 4.61855209234005759330070485959, 4.66855025925024018782452245963, 5.81501618418828311382857964648, 6.07212395300377907053598849885, 6.97944477624608067420526082003, 7.26295291946146576499045064391, 7.82974908836104763408757624992, 7.84063531446713307099307528031, 8.750249254305893253716540901777, 8.843653158631719744454767642130, 9.436387704973736674137603408515, 9.848017801791531731264736708663, 10.13254441819733875365628237018, 10.89195999420503365865128832469