L(s) = 1 | + (−5.19 + 0.0444i)3-s − 5i·5-s + 5.27i·7-s + (26.9 − 0.461i)9-s + 36.5·11-s − 81.4·13-s + (0.222 + 25.9i)15-s − 56.6i·17-s + 124. i·19-s + (−0.234 − 27.4i)21-s + 71.2·23-s − 25·25-s + (−140. + 3.60i)27-s + 87.4i·29-s + 55.1i·31-s + ⋯ |
L(s) = 1 | + (−0.999 + 0.00855i)3-s − 0.447i·5-s + 0.285i·7-s + (0.999 − 0.0171i)9-s + 1.00·11-s − 1.73·13-s + (0.00382 + 0.447i)15-s − 0.808i·17-s + 1.49i·19-s + (−0.00243 − 0.285i)21-s + 0.646·23-s − 0.200·25-s + (−0.999 + 0.0256i)27-s + 0.560i·29-s + 0.319i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.713 + 0.701i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.713 + 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.159542626\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.159542626\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (5.19 - 0.0444i)T \) |
| 5 | \( 1 + 5iT \) |
good | 7 | \( 1 - 5.27iT - 343T^{2} \) |
| 11 | \( 1 - 36.5T + 1.33e3T^{2} \) |
| 13 | \( 1 + 81.4T + 2.19e3T^{2} \) |
| 17 | \( 1 + 56.6iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 124. iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 71.2T + 1.21e4T^{2} \) |
| 29 | \( 1 - 87.4iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 55.1iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 7.97T + 5.06e4T^{2} \) |
| 41 | \( 1 + 247. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 407. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 415.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 714. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 341.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 191.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 169. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 249.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 1.15e3T + 3.89e5T^{2} \) |
| 79 | \( 1 + 501. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 239.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 382. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 551.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.41790435954847040254866960775, −9.688002378975718613798629382616, −8.852105726505003805088249951927, −7.47513466831152552655638693830, −6.80448502582021999143455750777, −5.58007039731632746024554886682, −4.94581031999728134537200114824, −3.79870375705211138353157041369, −1.99828155765561222043139097973, −0.57476633536717184872333422193,
0.888541203679793248401493352363, 2.51094630637709658926002984625, 4.12479583820687205865677484954, 4.93408606666781627652394811051, 6.14892488635906751845846776021, 6.93683113162543492925214329059, 7.62019695574643921250845571798, 9.179058781008220593885780765398, 9.889867853156771712103031027034, 10.81626490781218825442563458280