L(s) = 1 | + (4.12 + 3.15i)3-s − 5i·5-s + 3.91i·7-s + (7.07 + 26.0i)9-s − 0.0664·11-s − 14.4·13-s + (15.7 − 20.6i)15-s + 99.3i·17-s + 10.8i·19-s + (−12.3 + 16.1i)21-s + 44.8·23-s − 25·25-s + (−53.0 + 129. i)27-s + 134. i·29-s + 10.0i·31-s + ⋯ |
L(s) = 1 | + (0.794 + 0.607i)3-s − 0.447i·5-s + 0.211i·7-s + (0.262 + 0.965i)9-s − 0.00182·11-s − 0.309·13-s + (0.271 − 0.355i)15-s + 1.41i·17-s + 0.130i·19-s + (−0.128 + 0.167i)21-s + 0.406·23-s − 0.200·25-s + (−0.378 + 0.925i)27-s + 0.860i·29-s + 0.0580i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.132 - 0.991i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.132 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.210322283\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.210322283\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-4.12 - 3.15i)T \) |
| 5 | \( 1 + 5iT \) |
good | 7 | \( 1 - 3.91iT - 343T^{2} \) |
| 11 | \( 1 + 0.0664T + 1.33e3T^{2} \) |
| 13 | \( 1 + 14.4T + 2.19e3T^{2} \) |
| 17 | \( 1 - 99.3iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 10.8iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 44.8T + 1.21e4T^{2} \) |
| 29 | \( 1 - 134. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 10.0iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 152.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 267. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 252. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 87.1T + 1.03e5T^{2} \) |
| 53 | \( 1 + 28.9iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 280.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 702.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 180. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 927.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 516.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 787. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 1.13e3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 649. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 796.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61232322875240670243792791087, −9.879122919053269339381244986054, −8.953849593307443497342395214237, −8.330976646203553419822050051434, −7.41244133661694304980997287367, −6.05272486205360316098642214254, −4.93516648961412805118073072655, −4.02309150513693987734522255632, −2.88077562756717137675757898937, −1.55510983798189033734594980044,
0.62910363730288844618696197222, 2.22362090687669637018395496685, 3.13540758469047133572236603814, 4.36132237752516279234485832568, 5.76884145839149262575698635042, 7.01222799478001481675888110173, 7.39832562858251680009520932742, 8.516526405292275252249814020628, 9.393703258902445253784810214149, 10.17058989871323064331255790478