L(s) = 1 | + (4.47 − 2.63i)3-s + 5i·5-s + 30.6i·7-s + (13.1 − 23.5i)9-s + 8.44·11-s + 1.42·13-s + (13.1 + 22.3i)15-s + 53.1i·17-s − 42.2i·19-s + (80.8 + 137. i)21-s − 75.5·23-s − 25·25-s + (−3.29 − 140. i)27-s + 184. i·29-s + 313. i·31-s + ⋯ |
L(s) = 1 | + (0.862 − 0.506i)3-s + 0.447i·5-s + 1.65i·7-s + (0.486 − 0.873i)9-s + 0.231·11-s + 0.0303·13-s + (0.226 + 0.385i)15-s + 0.758i·17-s − 0.510i·19-s + (0.839 + 1.42i)21-s − 0.684·23-s − 0.200·25-s + (−0.0234 − 0.999i)27-s + 1.17i·29-s + 1.81i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.251 - 0.967i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.251 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.341916424\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.341916424\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-4.47 + 2.63i)T \) |
| 5 | \( 1 - 5iT \) |
good | 7 | \( 1 - 30.6iT - 343T^{2} \) |
| 11 | \( 1 - 8.44T + 1.33e3T^{2} \) |
| 13 | \( 1 - 1.42T + 2.19e3T^{2} \) |
| 17 | \( 1 - 53.1iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 42.2iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 75.5T + 1.21e4T^{2} \) |
| 29 | \( 1 - 184. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 313. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 344.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 349. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 161. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 505.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 215. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 582.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 635.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 143. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 473.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 224.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 1.18e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 425.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 827. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.04e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.73485955758602297125147587278, −9.658516446279654317221140776998, −8.750443167365372381109077642368, −8.351005063512803594257827328694, −7.05689159361413699606934613133, −6.29231560805457687642204855492, −5.18524947955364219698784835617, −3.58618686981811893462097878401, −2.64678799468567549033257261973, −1.63991820468528114887015840515,
0.65483998739696972479473176002, 2.18367607022237370708229853434, 3.83474752257244306009179302812, 4.16314535429901502412125654577, 5.49098550105813514325965193073, 7.02918235162976991260471433097, 7.70345540179599155742580008068, 8.581417976966516017463930155741, 9.658434663840766186054255920559, 10.16431953796721331736841886774