L(s) = 1 | + (4.92 + 1.66i)3-s + 5i·5-s − 15.5i·7-s + (21.4 + 16.4i)9-s − 8.50·11-s + 48.3·13-s + (−8.33 + 24.6i)15-s − 33.7i·17-s + 64.9i·19-s + (25.8 − 76.4i)21-s + 159.·23-s − 25·25-s + (78.1 + 116. i)27-s + 108. i·29-s − 215. i·31-s + ⋯ |
L(s) = 1 | + (0.947 + 0.320i)3-s + 0.447i·5-s − 0.838i·7-s + (0.794 + 0.607i)9-s − 0.233·11-s + 1.03·13-s + (−0.143 + 0.423i)15-s − 0.480i·17-s + 0.784i·19-s + (0.269 − 0.794i)21-s + 1.44·23-s − 0.200·25-s + (0.557 + 0.830i)27-s + 0.695i·29-s − 1.24i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.896 - 0.442i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.896 - 0.442i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.989734407\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.989734407\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-4.92 - 1.66i)T \) |
| 5 | \( 1 - 5iT \) |
good | 7 | \( 1 + 15.5iT - 343T^{2} \) |
| 11 | \( 1 + 8.50T + 1.33e3T^{2} \) |
| 13 | \( 1 - 48.3T + 2.19e3T^{2} \) |
| 17 | \( 1 + 33.7iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 64.9iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 159.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 108. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 215. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 285.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 182. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 13.7iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 258.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 532. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 475.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 342.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 280. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 367.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 671.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 401. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 1.14e3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.43e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.46e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.67420415765757279383044085443, −9.709015176741658157390821078246, −8.915145047760931574091419298686, −7.85111810824258326487583645640, −7.24942949879267835902706686385, −6.06518921109326933595980300357, −4.62049470697018492993520101170, −3.68325398948966725079657229436, −2.74606509065913149255321129082, −1.19983568758924163032835109966,
1.06071938840141330654730349301, 2.36534462967156323734193784436, 3.42816586874828094362048173062, 4.68356259292977872568172432588, 5.88500272318886030949534717285, 6.91951873599448104766890956190, 8.007600753302809722203641098656, 8.830914916506038019066186428267, 9.194601854613719804556675566107, 10.45256506435237138940672298941