Properties

Label 2-483-1.1-c1-0-21
Degree $2$
Conductor $483$
Sign $-1$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.61·2-s − 3-s + 0.618·4-s − 2.61·5-s − 1.61·6-s + 7-s − 2.23·8-s + 9-s − 4.23·10-s − 2.23·11-s − 0.618·12-s − 6.85·13-s + 1.61·14-s + 2.61·15-s − 4.85·16-s + 3.47·17-s + 1.61·18-s − 3.76·19-s − 1.61·20-s − 21-s − 3.61·22-s + 23-s + 2.23·24-s + 1.85·25-s − 11.0·26-s − 27-s + 0.618·28-s + ⋯
L(s)  = 1  + 1.14·2-s − 0.577·3-s + 0.309·4-s − 1.17·5-s − 0.660·6-s + 0.377·7-s − 0.790·8-s + 0.333·9-s − 1.33·10-s − 0.674·11-s − 0.178·12-s − 1.90·13-s + 0.432·14-s + 0.675·15-s − 1.21·16-s + 0.842·17-s + 0.381·18-s − 0.863·19-s − 0.361·20-s − 0.218·21-s − 0.771·22-s + 0.208·23-s + 0.456·24-s + 0.370·25-s − 2.17·26-s − 0.192·27-s + 0.116·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 - T \)
23 \( 1 - T \)
good2 \( 1 - 1.61T + 2T^{2} \)
5 \( 1 + 2.61T + 5T^{2} \)
11 \( 1 + 2.23T + 11T^{2} \)
13 \( 1 + 6.85T + 13T^{2} \)
17 \( 1 - 3.47T + 17T^{2} \)
19 \( 1 + 3.76T + 19T^{2} \)
29 \( 1 - 10.7T + 29T^{2} \)
31 \( 1 + 5T + 31T^{2} \)
37 \( 1 + 9.47T + 37T^{2} \)
41 \( 1 + 4.70T + 41T^{2} \)
43 \( 1 - 7.32T + 43T^{2} \)
47 \( 1 - 0.763T + 47T^{2} \)
53 \( 1 + 1.38T + 53T^{2} \)
59 \( 1 - 1.85T + 59T^{2} \)
61 \( 1 - 2.09T + 61T^{2} \)
67 \( 1 + 0.145T + 67T^{2} \)
71 \( 1 - 11.6T + 71T^{2} \)
73 \( 1 - 5.47T + 73T^{2} \)
79 \( 1 + 11.9T + 79T^{2} \)
83 \( 1 + 9.94T + 83T^{2} \)
89 \( 1 + 0.673T + 89T^{2} \)
97 \( 1 - 5.18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.79450593174039892510984598321, −9.893281986431813321615983652435, −8.546331384402012229223328991291, −7.60114981634264924556613022056, −6.75100769493312226531274994752, −5.36091861991242819198887299311, −4.83836721377746536790923230274, −3.92484120595962203859369866348, −2.66890882043305631932503004946, 0, 2.66890882043305631932503004946, 3.92484120595962203859369866348, 4.83836721377746536790923230274, 5.36091861991242819198887299311, 6.75100769493312226531274994752, 7.60114981634264924556613022056, 8.546331384402012229223328991291, 9.893281986431813321615983652435, 10.79450593174039892510984598321

Graph of the $Z$-function along the critical line