L(s) = 1 | + (−0.742 + 1.43i)2-s + (−0.310 + 1.70i)3-s + (−0.361 − 0.507i)4-s + (−1.42 − 1.36i)5-s + (−2.22 − 1.71i)6-s + (−2.18 − 1.49i)7-s + (−2.20 + 0.317i)8-s + (−2.80 − 1.05i)9-s + (3.01 − 1.04i)10-s + (2.80 − 1.44i)11-s + (0.976 − 0.457i)12-s + (0.995 − 1.14i)13-s + (3.77 − 2.02i)14-s + (2.76 − 2.01i)15-s + (1.58 − 4.59i)16-s + (1.57 + 0.150i)17-s + ⋯ |
L(s) = 1 | + (−0.524 + 1.01i)2-s + (−0.179 + 0.983i)3-s + (−0.180 − 0.253i)4-s + (−0.638 − 0.608i)5-s + (−0.907 − 0.698i)6-s + (−0.824 − 0.565i)7-s + (−0.780 + 0.112i)8-s + (−0.935 − 0.352i)9-s + (0.954 − 0.330i)10-s + (0.846 − 0.436i)11-s + (0.281 − 0.132i)12-s + (0.276 − 0.318i)13-s + (1.00 − 0.542i)14-s + (0.713 − 0.518i)15-s + (0.397 − 1.14i)16-s + (0.382 + 0.0364i)17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.896+0.442i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.896+0.442i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.896+0.442i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.896+0.442i)
|
Particular Values
L(1) |
≈ |
0.346145−0.0807666i |
L(21) |
≈ |
0.346145−0.0807666i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.310−1.70i)T |
| 7 | 1+(2.18+1.49i)T |
| 23 | 1+(3.87+2.82i)T |
good | 2 | 1+(0.742−1.43i)T+(−1.16−1.62i)T2 |
| 5 | 1+(1.42+1.36i)T+(0.237+4.99i)T2 |
| 11 | 1+(−2.80+1.44i)T+(6.38−8.96i)T2 |
| 13 | 1+(−0.995+1.14i)T+(−1.85−12.8i)T2 |
| 17 | 1+(−1.57−0.150i)T+(16.6+3.21i)T2 |
| 19 | 1+(−0.259−2.71i)T+(−18.6+3.59i)T2 |
| 29 | 1+(1.34−0.613i)T+(18.9−21.9i)T2 |
| 31 | 1+(0.952+0.381i)T+(22.4+21.3i)T2 |
| 37 | 1+(10.2−2.49i)T+(32.8−16.9i)T2 |
| 41 | 1+(3.01+10.2i)T+(−34.4+22.1i)T2 |
| 43 | 1+(2.19+0.315i)T+(41.2+12.1i)T2 |
| 47 | 1+(−7.89+4.55i)T+(23.5−40.7i)T2 |
| 53 | 1+(0.972−0.187i)T+(49.2−19.6i)T2 |
| 59 | 1+(−9.15+3.16i)T+(46.3−36.4i)T2 |
| 61 | 1+(−1.07−1.36i)T+(−14.3+59.2i)T2 |
| 67 | 1+(13.8−0.660i)T+(66.6−6.36i)T2 |
| 71 | 1+(2.69+4.18i)T+(−29.4+64.5i)T2 |
| 73 | 1+(3.96+5.56i)T+(−23.8+68.9i)T2 |
| 79 | 1+(−1.10+5.72i)T+(−73.3−29.3i)T2 |
| 83 | 1+(1.52+0.446i)T+(69.8+44.8i)T2 |
| 89 | 1+(15.1−6.07i)T+(64.4−61.4i)T2 |
| 97 | 1+(−0.967−3.29i)T+(−81.6+52.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.62022334469812801082633439054, −9.885786870700216175892972431522, −8.833573942322592819037396966129, −8.447155009106057193436596194789, −7.29296077198307629821589209585, −6.29635143666943157927972424510, −5.49244808235760098184636834056, −4.05284053245263992844375242945, −3.37476728848934198379003954650, −0.26327965533270731842727609582,
1.53070524821842892580891950120, 2.75668967268031300770569980035, 3.68766582615290219686643004163, 5.69117841809178262154467945367, 6.59015933156029716109191011768, 7.30495695052684838432460652981, 8.584560058479832713117615133841, 9.341120093605898693328541932192, 10.26084999006071193932086409598, 11.34480647437100202431418757763