L(s) = 1 | − 1.06i·2-s + (−1.10 + 1.33i)3-s + 0.872·4-s + 4.21·5-s + (1.41 + 1.16i)6-s − i·7-s − 3.05i·8-s + (−0.576 − 2.94i)9-s − 4.47i·10-s − 2.41·11-s + (−0.960 + 1.16i)12-s + 4.65·13-s − 1.06·14-s + (−4.63 + 5.63i)15-s − 1.49·16-s − 3.38·17-s + ⋯ |
L(s) = 1 | − 0.750i·2-s + (−0.635 + 0.772i)3-s + 0.436·4-s + 1.88·5-s + (0.579 + 0.477i)6-s − 0.377i·7-s − 1.07i·8-s + (−0.192 − 0.981i)9-s − 1.41i·10-s − 0.727·11-s + (−0.277 + 0.336i)12-s + 1.29·13-s − 0.283·14-s + (−1.19 + 1.45i)15-s − 0.373·16-s − 0.821·17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.753+0.656i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.753+0.656i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.753+0.656i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(344,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.753+0.656i)
|
Particular Values
L(1) |
≈ |
1.68179−0.629989i |
L(21) |
≈ |
1.68179−0.629989i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.10−1.33i)T |
| 7 | 1+iT |
| 23 | 1+(4.79+0.134i)T |
good | 2 | 1+1.06iT−2T2 |
| 5 | 1−4.21T+5T2 |
| 11 | 1+2.41T+11T2 |
| 13 | 1−4.65T+13T2 |
| 17 | 1+3.38T+17T2 |
| 19 | 1−0.938iT−19T2 |
| 29 | 1−2.21iT−29T2 |
| 31 | 1+0.993T+31T2 |
| 37 | 1+0.131iT−37T2 |
| 41 | 1−7.16iT−41T2 |
| 43 | 1−4.89iT−43T2 |
| 47 | 1+7.21iT−47T2 |
| 53 | 1−2.35T+53T2 |
| 59 | 1+12.6iT−59T2 |
| 61 | 1−4.95iT−61T2 |
| 67 | 1−4.58iT−67T2 |
| 71 | 1−16.5iT−71T2 |
| 73 | 1−3.32T+73T2 |
| 79 | 1−8.91iT−79T2 |
| 83 | 1−3.38T+83T2 |
| 89 | 1+15.6T+89T2 |
| 97 | 1−15.8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83027705805911878363817044105, −10.08893006413966842560379528611, −9.667294645915899584244651581302, −8.546841549322179813468255262532, −6.74022551926998445545605087640, −6.14754634858023527373327384063, −5.29334682546050017620965206229, −3.93394006691073745919269488084, −2.64944989610444028562922388633, −1.39524820675073010646295446414,
1.75199843619176871290613119114, 2.51485753893589236903997010026, 5.04593103178906288309585021178, 5.97722703276895813602864558894, 6.11902616216118754395225606515, 7.13387011176401153658782828198, 8.255402673126450818616690815485, 9.111355918294679397061349765607, 10.46564420899666550088719327887, 10.89212249476168359646476253154