L(s) = 1 | − 1.06i·2-s + (−1.10 + 1.33i)3-s + 0.872·4-s + 4.21·5-s + (1.41 + 1.16i)6-s − i·7-s − 3.05i·8-s + (−0.576 − 2.94i)9-s − 4.47i·10-s − 2.41·11-s + (−0.960 + 1.16i)12-s + 4.65·13-s − 1.06·14-s + (−4.63 + 5.63i)15-s − 1.49·16-s − 3.38·17-s + ⋯ |
L(s) = 1 | − 0.750i·2-s + (−0.635 + 0.772i)3-s + 0.436·4-s + 1.88·5-s + (0.579 + 0.477i)6-s − 0.377i·7-s − 1.07i·8-s + (−0.192 − 0.981i)9-s − 1.41i·10-s − 0.727·11-s + (−0.277 + 0.336i)12-s + 1.29·13-s − 0.283·14-s + (−1.19 + 1.45i)15-s − 0.373·16-s − 0.821·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.753 + 0.656i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.753 + 0.656i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.68179 - 0.629989i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.68179 - 0.629989i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.10 - 1.33i)T \) |
| 7 | \( 1 + iT \) |
| 23 | \( 1 + (4.79 + 0.134i)T \) |
good | 2 | \( 1 + 1.06iT - 2T^{2} \) |
| 5 | \( 1 - 4.21T + 5T^{2} \) |
| 11 | \( 1 + 2.41T + 11T^{2} \) |
| 13 | \( 1 - 4.65T + 13T^{2} \) |
| 17 | \( 1 + 3.38T + 17T^{2} \) |
| 19 | \( 1 - 0.938iT - 19T^{2} \) |
| 29 | \( 1 - 2.21iT - 29T^{2} \) |
| 31 | \( 1 + 0.993T + 31T^{2} \) |
| 37 | \( 1 + 0.131iT - 37T^{2} \) |
| 41 | \( 1 - 7.16iT - 41T^{2} \) |
| 43 | \( 1 - 4.89iT - 43T^{2} \) |
| 47 | \( 1 + 7.21iT - 47T^{2} \) |
| 53 | \( 1 - 2.35T + 53T^{2} \) |
| 59 | \( 1 + 12.6iT - 59T^{2} \) |
| 61 | \( 1 - 4.95iT - 61T^{2} \) |
| 67 | \( 1 - 4.58iT - 67T^{2} \) |
| 71 | \( 1 - 16.5iT - 71T^{2} \) |
| 73 | \( 1 - 3.32T + 73T^{2} \) |
| 79 | \( 1 - 8.91iT - 79T^{2} \) |
| 83 | \( 1 - 3.38T + 83T^{2} \) |
| 89 | \( 1 + 15.6T + 89T^{2} \) |
| 97 | \( 1 - 15.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83027705805911878363817044105, −10.08893006413966842560379528611, −9.667294645915899584244651581302, −8.546841549322179813468255262532, −6.74022551926998445545605087640, −6.14754634858023527373327384063, −5.29334682546050017620965206229, −3.93394006691073745919269488084, −2.64944989610444028562922388633, −1.39524820675073010646295446414,
1.75199843619176871290613119114, 2.51485753893589236903997010026, 5.04593103178906288309585021178, 5.97722703276895813602864558894, 6.11902616216118754395225606515, 7.13387011176401153658782828198, 8.255402673126450818616690815485, 9.111355918294679397061349765607, 10.46564420899666550088719327887, 10.89212249476168359646476253154