L(s) = 1 | − 0.377i·2-s + (−1.03 − 1.38i)3-s + 1.85·4-s + 2.37·5-s + (−0.523 + 0.392i)6-s − i·7-s − 1.45i·8-s + (−0.840 + 2.87i)9-s − 0.895i·10-s + 6.18·11-s + (−1.93 − 2.57i)12-s − 3.83·13-s − 0.377·14-s + (−2.46 − 3.28i)15-s + 3.16·16-s + 0.877·17-s + ⋯ |
L(s) = 1 | − 0.267i·2-s + (−0.599 − 0.800i)3-s + 0.928·4-s + 1.06·5-s + (−0.213 + 0.160i)6-s − 0.377i·7-s − 0.515i·8-s + (−0.280 + 0.959i)9-s − 0.283i·10-s + 1.86·11-s + (−0.557 − 0.742i)12-s − 1.06·13-s − 0.100·14-s + (−0.636 − 0.848i)15-s + 0.791·16-s + 0.212·17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.387+0.921i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.387+0.921i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.387+0.921i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(344,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.387+0.921i)
|
Particular Values
L(1) |
≈ |
1.48032−0.983439i |
L(21) |
≈ |
1.48032−0.983439i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.03+1.38i)T |
| 7 | 1+iT |
| 23 | 1+(1.16−4.65i)T |
good | 2 | 1+0.377iT−2T2 |
| 5 | 1−2.37T+5T2 |
| 11 | 1−6.18T+11T2 |
| 13 | 1+3.83T+13T2 |
| 17 | 1−0.877T+17T2 |
| 19 | 1−3.29iT−19T2 |
| 29 | 1+5.12iT−29T2 |
| 31 | 1+8.93T+31T2 |
| 37 | 1+10.9iT−37T2 |
| 41 | 1−1.00iT−41T2 |
| 43 | 1−2.83iT−43T2 |
| 47 | 1−1.64iT−47T2 |
| 53 | 1+4.73T+53T2 |
| 59 | 1+10.7iT−59T2 |
| 61 | 1−6.29iT−61T2 |
| 67 | 1−2.23iT−67T2 |
| 71 | 1−8.32iT−71T2 |
| 73 | 1+9.99T+73T2 |
| 79 | 1−13.6iT−79T2 |
| 83 | 1−7.43T+83T2 |
| 89 | 1+3.93T+89T2 |
| 97 | 1+11.1iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.02075984150405302035775455493, −9.969108770833249496135995175090, −9.357351942837371964757391932560, −7.72296437080779177341331727309, −7.03754449836347954389798954856, −6.18756690858637431584771559759, −5.55098703501156032804501683700, −3.83819417059256529281350961784, −2.18083772681073560065012617356, −1.40404223328531844167709526115,
1.75179281478078504141132368640, 3.16724118041299511939607925432, 4.66827153599803119335603821182, 5.67393683245469991343924698172, 6.42183725600406711508892611124, 7.08487974602247674511081066478, 8.771281249911480737223528379575, 9.463181167988548191557922943296, 10.23260262671187727456100445408, 11.12910144237658542947432791965