L(s) = 1 | − 0.377i·2-s + (−1.03 − 1.38i)3-s + 1.85·4-s + 2.37·5-s + (−0.523 + 0.392i)6-s − i·7-s − 1.45i·8-s + (−0.840 + 2.87i)9-s − 0.895i·10-s + 6.18·11-s + (−1.93 − 2.57i)12-s − 3.83·13-s − 0.377·14-s + (−2.46 − 3.28i)15-s + 3.16·16-s + 0.877·17-s + ⋯ |
L(s) = 1 | − 0.267i·2-s + (−0.599 − 0.800i)3-s + 0.928·4-s + 1.06·5-s + (−0.213 + 0.160i)6-s − 0.377i·7-s − 0.515i·8-s + (−0.280 + 0.959i)9-s − 0.283i·10-s + 1.86·11-s + (−0.557 − 0.742i)12-s − 1.06·13-s − 0.100·14-s + (−0.636 − 0.848i)15-s + 0.791·16-s + 0.212·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.387 + 0.921i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.387 + 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.48032 - 0.983439i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.48032 - 0.983439i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.03 + 1.38i)T \) |
| 7 | \( 1 + iT \) |
| 23 | \( 1 + (1.16 - 4.65i)T \) |
good | 2 | \( 1 + 0.377iT - 2T^{2} \) |
| 5 | \( 1 - 2.37T + 5T^{2} \) |
| 11 | \( 1 - 6.18T + 11T^{2} \) |
| 13 | \( 1 + 3.83T + 13T^{2} \) |
| 17 | \( 1 - 0.877T + 17T^{2} \) |
| 19 | \( 1 - 3.29iT - 19T^{2} \) |
| 29 | \( 1 + 5.12iT - 29T^{2} \) |
| 31 | \( 1 + 8.93T + 31T^{2} \) |
| 37 | \( 1 + 10.9iT - 37T^{2} \) |
| 41 | \( 1 - 1.00iT - 41T^{2} \) |
| 43 | \( 1 - 2.83iT - 43T^{2} \) |
| 47 | \( 1 - 1.64iT - 47T^{2} \) |
| 53 | \( 1 + 4.73T + 53T^{2} \) |
| 59 | \( 1 + 10.7iT - 59T^{2} \) |
| 61 | \( 1 - 6.29iT - 61T^{2} \) |
| 67 | \( 1 - 2.23iT - 67T^{2} \) |
| 71 | \( 1 - 8.32iT - 71T^{2} \) |
| 73 | \( 1 + 9.99T + 73T^{2} \) |
| 79 | \( 1 - 13.6iT - 79T^{2} \) |
| 83 | \( 1 - 7.43T + 83T^{2} \) |
| 89 | \( 1 + 3.93T + 89T^{2} \) |
| 97 | \( 1 + 11.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.02075984150405302035775455493, −9.969108770833249496135995175090, −9.357351942837371964757391932560, −7.72296437080779177341331727309, −7.03754449836347954389798954856, −6.18756690858637431584771559759, −5.55098703501156032804501683700, −3.83819417059256529281350961784, −2.18083772681073560065012617356, −1.40404223328531844167709526115,
1.75179281478078504141132368640, 3.16724118041299511939607925432, 4.66827153599803119335603821182, 5.67393683245469991343924698172, 6.42183725600406711508892611124, 7.08487974602247674511081066478, 8.771281249911480737223528379575, 9.463181167988548191557922943296, 10.23260262671187727456100445408, 11.12910144237658542947432791965