L(s) = 1 | − 0.369i·2-s + (0.867 + 1.49i)3-s + 1.86·4-s − 1.03·5-s + (0.554 − 0.320i)6-s − i·7-s − 1.42i·8-s + (−1.49 + 2.60i)9-s + 0.381i·10-s + 0.430·11-s + (1.61 + 2.79i)12-s + 4.27·13-s − 0.369·14-s + (−0.895 − 1.54i)15-s + 3.19·16-s + 7.25·17-s + ⋯ |
L(s) = 1 | − 0.261i·2-s + (0.500 + 0.865i)3-s + 0.931·4-s − 0.461·5-s + (0.226 − 0.130i)6-s − 0.377i·7-s − 0.504i·8-s + (−0.498 + 0.866i)9-s + 0.120i·10-s + 0.129·11-s + (0.466 + 0.806i)12-s + 1.18·13-s − 0.0987·14-s + (−0.231 − 0.399i)15-s + 0.799·16-s + 1.75·17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.897−0.441i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.897−0.441i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.897−0.441i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(344,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.897−0.441i)
|
Particular Values
L(1) |
≈ |
1.92780+0.448621i |
L(21) |
≈ |
1.92780+0.448621i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.867−1.49i)T |
| 7 | 1+iT |
| 23 | 1+(4.78+0.321i)T |
good | 2 | 1+0.369iT−2T2 |
| 5 | 1+1.03T+5T2 |
| 11 | 1−0.430T+11T2 |
| 13 | 1−4.27T+13T2 |
| 17 | 1−7.25T+17T2 |
| 19 | 1−3.53iT−19T2 |
| 29 | 1−4.52iT−29T2 |
| 31 | 1+3.23T+31T2 |
| 37 | 1−8.22iT−37T2 |
| 41 | 1+4.85iT−41T2 |
| 43 | 1+9.90iT−43T2 |
| 47 | 1+0.312iT−47T2 |
| 53 | 1+10.6T+53T2 |
| 59 | 1+8.46iT−59T2 |
| 61 | 1+11.8iT−61T2 |
| 67 | 1+5.50iT−67T2 |
| 71 | 1+12.5iT−71T2 |
| 73 | 1+4.83T+73T2 |
| 79 | 1−17.2iT−79T2 |
| 83 | 1−10.7T+83T2 |
| 89 | 1−4.36T+89T2 |
| 97 | 1−4.63iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.87322720856764381812012155290, −10.30550044698311679803843242870, −9.501343602944300677736509871803, −8.149212034506522385082309214831, −7.74139156340489728631596061040, −6.36814188984852902671178252125, −5.35663301284854156199286993950, −3.69744516547076024483326943872, −3.46099870738988631898592723584, −1.70753060696453066544896145013,
1.41579307779124018092319281243, 2.75187293605108719694838604498, 3.78236785221669010353018103717, 5.76622080477071335345063218797, 6.25011316298649649213292833363, 7.52903191162504721613827519451, 7.86604791310157054876219015164, 8.858170132576418900798716113669, 9.990371343057969038729689275379, 11.28015702902507735131772876337