L(s) = 1 | − 0.369i·2-s + (0.867 + 1.49i)3-s + 1.86·4-s − 1.03·5-s + (0.554 − 0.320i)6-s − i·7-s − 1.42i·8-s + (−1.49 + 2.60i)9-s + 0.381i·10-s + 0.430·11-s + (1.61 + 2.79i)12-s + 4.27·13-s − 0.369·14-s + (−0.895 − 1.54i)15-s + 3.19·16-s + 7.25·17-s + ⋯ |
L(s) = 1 | − 0.261i·2-s + (0.500 + 0.865i)3-s + 0.931·4-s − 0.461·5-s + (0.226 − 0.130i)6-s − 0.377i·7-s − 0.504i·8-s + (−0.498 + 0.866i)9-s + 0.120i·10-s + 0.129·11-s + (0.466 + 0.806i)12-s + 1.18·13-s − 0.0987·14-s + (−0.231 − 0.399i)15-s + 0.799·16-s + 1.75·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.897 - 0.441i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.897 - 0.441i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.92780 + 0.448621i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.92780 + 0.448621i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.867 - 1.49i)T \) |
| 7 | \( 1 + iT \) |
| 23 | \( 1 + (4.78 + 0.321i)T \) |
good | 2 | \( 1 + 0.369iT - 2T^{2} \) |
| 5 | \( 1 + 1.03T + 5T^{2} \) |
| 11 | \( 1 - 0.430T + 11T^{2} \) |
| 13 | \( 1 - 4.27T + 13T^{2} \) |
| 17 | \( 1 - 7.25T + 17T^{2} \) |
| 19 | \( 1 - 3.53iT - 19T^{2} \) |
| 29 | \( 1 - 4.52iT - 29T^{2} \) |
| 31 | \( 1 + 3.23T + 31T^{2} \) |
| 37 | \( 1 - 8.22iT - 37T^{2} \) |
| 41 | \( 1 + 4.85iT - 41T^{2} \) |
| 43 | \( 1 + 9.90iT - 43T^{2} \) |
| 47 | \( 1 + 0.312iT - 47T^{2} \) |
| 53 | \( 1 + 10.6T + 53T^{2} \) |
| 59 | \( 1 + 8.46iT - 59T^{2} \) |
| 61 | \( 1 + 11.8iT - 61T^{2} \) |
| 67 | \( 1 + 5.50iT - 67T^{2} \) |
| 71 | \( 1 + 12.5iT - 71T^{2} \) |
| 73 | \( 1 + 4.83T + 73T^{2} \) |
| 79 | \( 1 - 17.2iT - 79T^{2} \) |
| 83 | \( 1 - 10.7T + 83T^{2} \) |
| 89 | \( 1 - 4.36T + 89T^{2} \) |
| 97 | \( 1 - 4.63iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87322720856764381812012155290, −10.30550044698311679803843242870, −9.501343602944300677736509871803, −8.149212034506522385082309214831, −7.74139156340489728631596061040, −6.36814188984852902671178252125, −5.35663301284854156199286993950, −3.69744516547076024483326943872, −3.46099870738988631898592723584, −1.70753060696453066544896145013,
1.41579307779124018092319281243, 2.75187293605108719694838604498, 3.78236785221669010353018103717, 5.76622080477071335345063218797, 6.25011316298649649213292833363, 7.52903191162504721613827519451, 7.86604791310157054876219015164, 8.858170132576418900798716113669, 9.990371343057969038729689275379, 11.28015702902507735131772876337