L(s) = 1 | + 1.86·2-s + i·3-s + 1.46·4-s + 4.10·5-s + 1.86i·6-s + (0.663 − 2.56i)7-s − 8-s − 9-s + 7.63·10-s − 1.89i·11-s + 1.46i·12-s + 2.18i·13-s + (1.23 − 4.76i)14-s + 4.10i·15-s − 4.78·16-s − 1.18·17-s + ⋯ |
L(s) = 1 | + 1.31·2-s + 0.577i·3-s + 0.731·4-s + 1.83·5-s + 0.759i·6-s + (0.250 − 0.968i)7-s − 0.353·8-s − 0.333·9-s + 2.41·10-s − 0.572i·11-s + 0.422i·12-s + 0.605i·13-s + (0.329 − 1.27i)14-s + 1.05i·15-s − 1.19·16-s − 0.287·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.974 - 0.222i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.974 - 0.222i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.23700 + 0.364448i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.23700 + 0.364448i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - iT \) |
| 7 | \( 1 + (-0.663 + 2.56i)T \) |
| 23 | \( 1 + (4.25 - 2.20i)T \) |
good | 2 | \( 1 - 1.86T + 2T^{2} \) |
| 5 | \( 1 - 4.10T + 5T^{2} \) |
| 11 | \( 1 + 1.89iT - 11T^{2} \) |
| 13 | \( 1 - 2.18iT - 13T^{2} \) |
| 17 | \( 1 + 1.18T + 17T^{2} \) |
| 19 | \( 1 + 4.98T + 19T^{2} \) |
| 29 | \( 1 - 2.39T + 29T^{2} \) |
| 31 | \( 1 - 9.32iT - 31T^{2} \) |
| 37 | \( 1 - 6.92iT - 37T^{2} \) |
| 41 | \( 1 + 5.60iT - 41T^{2} \) |
| 43 | \( 1 + 5.38iT - 43T^{2} \) |
| 47 | \( 1 - 9.57iT - 47T^{2} \) |
| 53 | \( 1 + 5.85iT - 53T^{2} \) |
| 59 | \( 1 + 3.50iT - 59T^{2} \) |
| 61 | \( 1 - 1.49T + 61T^{2} \) |
| 67 | \( 1 + 3.48iT - 67T^{2} \) |
| 71 | \( 1 - 1.81T + 71T^{2} \) |
| 73 | \( 1 + 7.97iT - 73T^{2} \) |
| 79 | \( 1 + 14.0iT - 79T^{2} \) |
| 83 | \( 1 - 2.51T + 83T^{2} \) |
| 89 | \( 1 + 4.57T + 89T^{2} \) |
| 97 | \( 1 - 7.44T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89396210334417705045263419121, −10.31956295615472589456454446915, −9.371893379835241179300137781598, −8.544366709265978350519451436255, −6.72708297643269860162839058426, −6.16387953942720101013813821129, −5.18043642646086444763224304400, −4.42785553001265736486222604778, −3.27722170801616874437916166542, −1.93490868601404943841463345237,
2.09500060673471962157198010144, 2.59320247479866846798542933645, 4.41489817409829726654798048391, 5.51715871953315008735226006825, 5.97045655189728810642828726224, 6.70632483814990223201872582573, 8.298704454535582249499546184295, 9.216186999861685414984280093226, 10.05700491710957180195557424778, 11.20902706848890629835296441953