L(s) = 1 | + 1.86·2-s + i·3-s + 1.46·4-s + 4.10·5-s + 1.86i·6-s + (0.663 − 2.56i)7-s − 8-s − 9-s + 7.63·10-s − 1.89i·11-s + 1.46i·12-s + 2.18i·13-s + (1.23 − 4.76i)14-s + 4.10i·15-s − 4.78·16-s − 1.18·17-s + ⋯ |
L(s) = 1 | + 1.31·2-s + 0.577i·3-s + 0.731·4-s + 1.83·5-s + 0.759i·6-s + (0.250 − 0.968i)7-s − 0.353·8-s − 0.333·9-s + 2.41·10-s − 0.572i·11-s + 0.422i·12-s + 0.605i·13-s + (0.329 − 1.27i)14-s + 1.05i·15-s − 1.19·16-s − 0.287·17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.974−0.222i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.974−0.222i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.974−0.222i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(160,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.974−0.222i)
|
Particular Values
L(1) |
≈ |
3.23700+0.364448i |
L(21) |
≈ |
3.23700+0.364448i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−iT |
| 7 | 1+(−0.663+2.56i)T |
| 23 | 1+(4.25−2.20i)T |
good | 2 | 1−1.86T+2T2 |
| 5 | 1−4.10T+5T2 |
| 11 | 1+1.89iT−11T2 |
| 13 | 1−2.18iT−13T2 |
| 17 | 1+1.18T+17T2 |
| 19 | 1+4.98T+19T2 |
| 29 | 1−2.39T+29T2 |
| 31 | 1−9.32iT−31T2 |
| 37 | 1−6.92iT−37T2 |
| 41 | 1+5.60iT−41T2 |
| 43 | 1+5.38iT−43T2 |
| 47 | 1−9.57iT−47T2 |
| 53 | 1+5.85iT−53T2 |
| 59 | 1+3.50iT−59T2 |
| 61 | 1−1.49T+61T2 |
| 67 | 1+3.48iT−67T2 |
| 71 | 1−1.81T+71T2 |
| 73 | 1+7.97iT−73T2 |
| 79 | 1+14.0iT−79T2 |
| 83 | 1−2.51T+83T2 |
| 89 | 1+4.57T+89T2 |
| 97 | 1−7.44T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89396210334417705045263419121, −10.31956295615472589456454446915, −9.371893379835241179300137781598, −8.544366709265978350519451436255, −6.72708297643269860162839058426, −6.16387953942720101013813821129, −5.18043642646086444763224304400, −4.42785553001265736486222604778, −3.27722170801616874437916166542, −1.93490868601404943841463345237,
2.09500060673471962157198010144, 2.59320247479866846798542933645, 4.41489817409829726654798048391, 5.51715871953315008735226006825, 5.97045655189728810642828726224, 6.70632483814990223201872582573, 8.298704454535582249499546184295, 9.216186999861685414984280093226, 10.05700491710957180195557424778, 11.20902706848890629835296441953