L(s) = 1 | − 2.11·2-s − i·3-s + 2.47·4-s + 1.98·5-s + 2.11i·6-s + (−2.62 + 0.302i)7-s − 1.00·8-s − 9-s − 4.20·10-s + 2.93i·11-s − 2.47i·12-s + 4.75i·13-s + (5.55 − 0.638i)14-s − 1.98i·15-s − 2.83·16-s − 0.444·17-s + ⋯ |
L(s) = 1 | − 1.49·2-s − 0.577i·3-s + 1.23·4-s + 0.889·5-s + 0.863i·6-s + (−0.993 + 0.114i)7-s − 0.353·8-s − 0.333·9-s − 1.33·10-s + 0.883i·11-s − 0.713i·12-s + 1.31i·13-s + (1.48 − 0.170i)14-s − 0.513i·15-s − 0.707·16-s − 0.107·17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.0829−0.996i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.0829−0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.0829−0.996i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(160,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.0829−0.996i)
|
Particular Values
L(1) |
≈ |
0.324474+0.298588i |
L(21) |
≈ |
0.324474+0.298588i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+iT |
| 7 | 1+(2.62−0.302i)T |
| 23 | 1+(−4.70−0.940i)T |
good | 2 | 1+2.11T+2T2 |
| 5 | 1−1.98T+5T2 |
| 11 | 1−2.93iT−11T2 |
| 13 | 1−4.75iT−13T2 |
| 17 | 1+0.444T+17T2 |
| 19 | 1+6.30T+19T2 |
| 29 | 1+2.58T+29T2 |
| 31 | 1+6.35iT−31T2 |
| 37 | 1−6.69iT−37T2 |
| 41 | 1−10.5iT−41T2 |
| 43 | 1−12.6iT−43T2 |
| 47 | 1+5.66iT−47T2 |
| 53 | 1−10.6iT−53T2 |
| 59 | 1+6.39iT−59T2 |
| 61 | 1+3.42T+61T2 |
| 67 | 1−9.73iT−67T2 |
| 71 | 1−8.75T+71T2 |
| 73 | 1+0.926iT−73T2 |
| 79 | 1+8.86iT−79T2 |
| 83 | 1+4.81T+83T2 |
| 89 | 1−0.0511T+89T2 |
| 97 | 1−17.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.96046009629797589959304157644, −9.844443208512583511135068054958, −9.518159155862584492500478538744, −8.738699298025780362853036623212, −7.63962196380475713871165601832, −6.66415222482631463470044869277, −6.25210836025236319684533930391, −4.49297340888333469216494495704, −2.50684068057011214115807020072, −1.58775319213468803849386458630,
0.42466584081625905436003491518, 2.32578866399791171734492496739, 3.60815073457334114195230687116, 5.36230378401750704956893652798, 6.26668225224520818725246693440, 7.26759034583948714663011294213, 8.552681798607522324838115939812, 8.979205232367181362298375329183, 9.866020536664119414924998023416, 10.61852756982900967923616585466