L(s) = 1 | + (1.13 − 1.96i)2-s + (0.5 + 0.866i)3-s + (−1.58 − 2.74i)4-s + (−2.07 + 3.59i)5-s + 2.27·6-s + (−1.69 + 2.03i)7-s − 2.64·8-s + (−0.499 + 0.866i)9-s + (4.71 + 8.17i)10-s + (1.59 + 2.76i)11-s + (1.58 − 2.74i)12-s + 0.175·13-s + (2.08 + 5.64i)14-s − 4.15·15-s + (0.156 − 0.270i)16-s + (0.663 + 1.14i)17-s + ⋯ |
L(s) = 1 | + (0.803 − 1.39i)2-s + (0.288 + 0.499i)3-s + (−0.791 − 1.37i)4-s + (−0.928 + 1.60i)5-s + 0.927·6-s + (−0.639 + 0.768i)7-s − 0.936·8-s + (−0.166 + 0.288i)9-s + (1.49 + 2.58i)10-s + (0.480 + 0.832i)11-s + (0.456 − 0.791i)12-s + 0.0487·13-s + (0.556 + 1.50i)14-s − 1.07·15-s + (0.0390 − 0.0676i)16-s + (0.160 + 0.278i)17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.914−0.404i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.914−0.404i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.914−0.404i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(415,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.914−0.404i)
|
Particular Values
L(1) |
≈ |
1.67621+0.354493i |
L(21) |
≈ |
1.67621+0.354493i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5−0.866i)T |
| 7 | 1+(1.69−2.03i)T |
| 23 | 1+(−0.5+0.866i)T |
good | 2 | 1+(−1.13+1.96i)T+(−1−1.73i)T2 |
| 5 | 1+(2.07−3.59i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−1.59−2.76i)T+(−5.5+9.52i)T2 |
| 13 | 1−0.175T+13T2 |
| 17 | 1+(−0.663−1.14i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.0252−0.0436i)T+(−9.5−16.4i)T2 |
| 29 | 1−1.10T+29T2 |
| 31 | 1+(−4.35−7.54i)T+(−15.5+26.8i)T2 |
| 37 | 1+(1.88−3.25i)T+(−18.5−32.0i)T2 |
| 41 | 1−4.84T+41T2 |
| 43 | 1+10.5T+43T2 |
| 47 | 1+(−4.47+7.75i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−4.98−8.63i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−3.19−5.53i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−3.61+6.26i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3.01+5.21i)T+(−33.5+58.0i)T2 |
| 71 | 1−6.71T+71T2 |
| 73 | 1+(−2.30−3.99i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−7.74+13.4i)T+(−39.5−68.4i)T2 |
| 83 | 1−7.21T+83T2 |
| 89 | 1+(−0.970+1.68i)T+(−44.5−77.0i)T2 |
| 97 | 1+12.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.09630965071401166465835123607, −10.32231176298318989741328681899, −9.840737815364508812920517492763, −8.586262837046732801763725509156, −7.25862011868388112799848448388, −6.31288381194569976460868929205, −4.86361504532602463103856251409, −3.77459631805805611650195193353, −3.16416138126449895106517805066, −2.27501025536518949375066765892,
0.814090694750727083414636215371, 3.58743315325005279377968649464, 4.25695546895641842709474458823, 5.31697640186767448771558463839, 6.30683705125668241752220823999, 7.26819887392800533794004781951, 8.028603684231789253958443974596, 8.627259998433891908405580413631, 9.609712346021600688375234829901, 11.29123271838147190855394576787