L(s) = 1 | + (−1.25 − 2.17i)2-s + (0.5 − 0.866i)3-s + (−2.16 + 3.74i)4-s + (−2.15 − 3.73i)5-s − 2.51·6-s + (1.42 − 2.22i)7-s + 5.85·8-s + (−0.499 − 0.866i)9-s + (−5.42 + 9.40i)10-s + (−0.864 + 1.49i)11-s + (2.16 + 3.74i)12-s − 2.88·13-s + (−6.64 − 0.306i)14-s − 4.31·15-s + (−3.03 − 5.25i)16-s + (2.46 − 4.27i)17-s + ⋯ |
L(s) = 1 | + (−0.889 − 1.54i)2-s + (0.288 − 0.499i)3-s + (−1.08 + 1.87i)4-s + (−0.965 − 1.67i)5-s − 1.02·6-s + (0.539 − 0.842i)7-s + 2.06·8-s + (−0.166 − 0.288i)9-s + (−1.71 + 2.97i)10-s + (−0.260 + 0.451i)11-s + (0.624 + 1.08i)12-s − 0.801·13-s + (−1.77 − 0.0818i)14-s − 1.11·15-s + (−0.757 − 1.31i)16-s + (0.598 − 1.03i)17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.109−0.994i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.109−0.994i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.109−0.994i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(277,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.109−0.994i)
|
Particular Values
L(1) |
≈ |
0.412941+0.370060i |
L(21) |
≈ |
0.412941+0.370060i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5+0.866i)T |
| 7 | 1+(−1.42+2.22i)T |
| 23 | 1+(0.5+0.866i)T |
good | 2 | 1+(1.25+2.17i)T+(−1+1.73i)T2 |
| 5 | 1+(2.15+3.73i)T+(−2.5+4.33i)T2 |
| 11 | 1+(0.864−1.49i)T+(−5.5−9.52i)T2 |
| 13 | 1+2.88T+13T2 |
| 17 | 1+(−2.46+4.27i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.22+2.11i)T+(−9.5+16.4i)T2 |
| 29 | 1−8.05T+29T2 |
| 31 | 1+(0.457−0.793i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−4.57−7.92i)T+(−18.5+32.0i)T2 |
| 41 | 1+6.60T+41T2 |
| 43 | 1−10.7T+43T2 |
| 47 | 1+(−0.199−0.346i)T+(−23.5+40.7i)T2 |
| 53 | 1+(3.27−5.66i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−0.917+1.58i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−0.650−1.12i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5.10+8.84i)T+(−33.5−58.0i)T2 |
| 71 | 1+9.00T+71T2 |
| 73 | 1+(−1.30+2.26i)T+(−36.5−63.2i)T2 |
| 79 | 1+(5.09+8.82i)T+(−39.5+68.4i)T2 |
| 83 | 1+10.8T+83T2 |
| 89 | 1+(7.49+12.9i)T+(−44.5+77.0i)T2 |
| 97 | 1+3.07T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.23995245316993649429289056912, −9.437537632847720633580778680197, −8.600825157631603425423167916697, −7.928674909324020828784319672635, −7.31913364558359978795307794347, −4.85355418735337844085594291372, −4.31496485695622351621984208505, −2.91775488674725555285131155745, −1.41461360840507551873904449931, −0.47379162985919674995987383752,
2.67268366338395328094695585087, 4.10326465661217841929067795252, 5.50250125500398025538565398791, 6.32673060117596687740826745553, 7.34027656784809240481684266745, 8.031249217391877301365620630881, 8.552160056077467560900164965607, 9.819165805263082626560846447424, 10.45415955927797990984855748834, 11.27752930333724454763148185898