L(s) = 1 | + (0.0982 − 0.215i)2-s + (−0.959 − 0.281i)3-s + (1.27 + 1.46i)4-s + (−0.841 + 0.540i)5-s + (−0.154 + 0.178i)6-s + (−0.142 + 0.989i)7-s + (0.894 − 0.262i)8-s + (0.841 + 0.540i)9-s + (0.0336 + 0.234i)10-s + (−0.827 − 1.81i)11-s + (−0.807 − 1.76i)12-s + (0.561 + 3.90i)13-s + (0.198 + 0.127i)14-s + (0.959 − 0.281i)15-s + (−0.521 + 3.63i)16-s + (−2.66 + 3.07i)17-s + ⋯ |
L(s) = 1 | + (0.0694 − 0.152i)2-s + (−0.553 − 0.162i)3-s + (0.636 + 0.734i)4-s + (−0.376 + 0.241i)5-s + (−0.0632 + 0.0729i)6-s + (−0.0537 + 0.374i)7-s + (0.316 − 0.0929i)8-s + (0.280 + 0.180i)9-s + (0.0106 + 0.0740i)10-s + (−0.249 − 0.546i)11-s + (−0.233 − 0.510i)12-s + (0.155 + 1.08i)13-s + (0.0531 + 0.0341i)14-s + (0.247 − 0.0727i)15-s + (−0.130 + 0.907i)16-s + (−0.645 + 0.745i)17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.138−0.990i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.138−0.990i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.138−0.990i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(190,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.138−0.990i)
|
Particular Values
L(1) |
≈ |
0.877354+0.763084i |
L(21) |
≈ |
0.877354+0.763084i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.959+0.281i)T |
| 7 | 1+(0.142−0.989i)T |
| 23 | 1+(−4.79−0.102i)T |
good | 2 | 1+(−0.0982+0.215i)T+(−1.30−1.51i)T2 |
| 5 | 1+(0.841−0.540i)T+(2.07−4.54i)T2 |
| 11 | 1+(0.827+1.81i)T+(−7.20+8.31i)T2 |
| 13 | 1+(−0.561−3.90i)T+(−12.4+3.66i)T2 |
| 17 | 1+(2.66−3.07i)T+(−2.41−16.8i)T2 |
| 19 | 1+(0.0577+0.0666i)T+(−2.70+18.8i)T2 |
| 29 | 1+(2.80−3.23i)T+(−4.12−28.7i)T2 |
| 31 | 1+(4.68−1.37i)T+(26.0−16.7i)T2 |
| 37 | 1+(−3.51−2.25i)T+(15.3+33.6i)T2 |
| 41 | 1+(−2.35+1.51i)T+(17.0−37.2i)T2 |
| 43 | 1+(−9.65−2.83i)T+(36.1+23.2i)T2 |
| 47 | 1+0.958T+47T2 |
| 53 | 1+(−1.66+11.6i)T+(−50.8−14.9i)T2 |
| 59 | 1+(−0.917−6.38i)T+(−56.6+16.6i)T2 |
| 61 | 1+(−2.16+0.634i)T+(51.3−32.9i)T2 |
| 67 | 1+(−2.71+5.94i)T+(−43.8−50.6i)T2 |
| 71 | 1+(−0.811+1.77i)T+(−46.4−53.6i)T2 |
| 73 | 1+(4.59+5.29i)T+(−10.3+72.2i)T2 |
| 79 | 1+(0.457+3.18i)T+(−75.7+22.2i)T2 |
| 83 | 1+(−4.99−3.21i)T+(34.4+75.4i)T2 |
| 89 | 1+(9.84+2.88i)T+(74.8+48.1i)T2 |
| 97 | 1+(−9.57+6.15i)T+(40.2−88.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.11202867295133350465941718025, −10.87942883321170900434330431383, −9.312108894345037684724790030498, −8.429224238108240375259218648060, −7.37165836111887146798020916928, −6.69648728355861933159752819487, −5.70037399862928327040327152392, −4.30039497772314103577903157144, −3.25240716672693751519442900865, −1.88413141167935353007406186826,
0.73581791347811696063485459518, 2.52208443657968574104789585375, 4.19353090088370030890266433982, 5.19121068818999484049762517791, 6.01801419724093170100067797946, 7.11416485864219451676374535618, 7.74696483611129106373508782979, 9.191572305582259127953434287463, 10.07657050996634985647280458336, 10.86939715117664898249071385012