Properties

Label 2-483-23.6-c1-0-4
Degree $2$
Conductor $483$
Sign $0.138 - 0.990i$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0982 − 0.215i)2-s + (−0.959 − 0.281i)3-s + (1.27 + 1.46i)4-s + (−0.841 + 0.540i)5-s + (−0.154 + 0.178i)6-s + (−0.142 + 0.989i)7-s + (0.894 − 0.262i)8-s + (0.841 + 0.540i)9-s + (0.0336 + 0.234i)10-s + (−0.827 − 1.81i)11-s + (−0.807 − 1.76i)12-s + (0.561 + 3.90i)13-s + (0.198 + 0.127i)14-s + (0.959 − 0.281i)15-s + (−0.521 + 3.63i)16-s + (−2.66 + 3.07i)17-s + ⋯
L(s)  = 1  + (0.0694 − 0.152i)2-s + (−0.553 − 0.162i)3-s + (0.636 + 0.734i)4-s + (−0.376 + 0.241i)5-s + (−0.0632 + 0.0729i)6-s + (−0.0537 + 0.374i)7-s + (0.316 − 0.0929i)8-s + (0.280 + 0.180i)9-s + (0.0106 + 0.0740i)10-s + (−0.249 − 0.546i)11-s + (−0.233 − 0.510i)12-s + (0.155 + 1.08i)13-s + (0.0531 + 0.0341i)14-s + (0.247 − 0.0727i)15-s + (−0.130 + 0.907i)16-s + (−0.645 + 0.745i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.138 - 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.138 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $0.138 - 0.990i$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{483} (190, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ 0.138 - 0.990i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.877354 + 0.763084i\)
\(L(\frac12)\) \(\approx\) \(0.877354 + 0.763084i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.959 + 0.281i)T \)
7 \( 1 + (0.142 - 0.989i)T \)
23 \( 1 + (-4.79 - 0.102i)T \)
good2 \( 1 + (-0.0982 + 0.215i)T + (-1.30 - 1.51i)T^{2} \)
5 \( 1 + (0.841 - 0.540i)T + (2.07 - 4.54i)T^{2} \)
11 \( 1 + (0.827 + 1.81i)T + (-7.20 + 8.31i)T^{2} \)
13 \( 1 + (-0.561 - 3.90i)T + (-12.4 + 3.66i)T^{2} \)
17 \( 1 + (2.66 - 3.07i)T + (-2.41 - 16.8i)T^{2} \)
19 \( 1 + (0.0577 + 0.0666i)T + (-2.70 + 18.8i)T^{2} \)
29 \( 1 + (2.80 - 3.23i)T + (-4.12 - 28.7i)T^{2} \)
31 \( 1 + (4.68 - 1.37i)T + (26.0 - 16.7i)T^{2} \)
37 \( 1 + (-3.51 - 2.25i)T + (15.3 + 33.6i)T^{2} \)
41 \( 1 + (-2.35 + 1.51i)T + (17.0 - 37.2i)T^{2} \)
43 \( 1 + (-9.65 - 2.83i)T + (36.1 + 23.2i)T^{2} \)
47 \( 1 + 0.958T + 47T^{2} \)
53 \( 1 + (-1.66 + 11.6i)T + (-50.8 - 14.9i)T^{2} \)
59 \( 1 + (-0.917 - 6.38i)T + (-56.6 + 16.6i)T^{2} \)
61 \( 1 + (-2.16 + 0.634i)T + (51.3 - 32.9i)T^{2} \)
67 \( 1 + (-2.71 + 5.94i)T + (-43.8 - 50.6i)T^{2} \)
71 \( 1 + (-0.811 + 1.77i)T + (-46.4 - 53.6i)T^{2} \)
73 \( 1 + (4.59 + 5.29i)T + (-10.3 + 72.2i)T^{2} \)
79 \( 1 + (0.457 + 3.18i)T + (-75.7 + 22.2i)T^{2} \)
83 \( 1 + (-4.99 - 3.21i)T + (34.4 + 75.4i)T^{2} \)
89 \( 1 + (9.84 + 2.88i)T + (74.8 + 48.1i)T^{2} \)
97 \( 1 + (-9.57 + 6.15i)T + (40.2 - 88.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.11202867295133350465941718025, −10.87942883321170900434330431383, −9.312108894345037684724790030498, −8.429224238108240375259218648060, −7.37165836111887146798020916928, −6.69648728355861933159752819487, −5.70037399862928327040327152392, −4.30039497772314103577903157144, −3.25240716672693751519442900865, −1.88413141167935353007406186826, 0.73581791347811696063485459518, 2.52208443657968574104789585375, 4.19353090088370030890266433982, 5.19121068818999484049762517791, 6.01801419724093170100067797946, 7.11416485864219451676374535618, 7.74696483611129106373508782979, 9.191572305582259127953434287463, 10.07657050996634985647280458336, 10.86939715117664898249071385012

Graph of the $Z$-function along the critical line