Properties

Label 2-483-23.13-c1-0-8
Degree $2$
Conductor $483$
Sign $-0.888 - 0.458i$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.64 + 1.89i)2-s + (0.841 + 0.540i)3-s + (−0.614 + 4.27i)4-s + (−0.415 + 0.909i)5-s + (0.357 + 2.48i)6-s + (−0.959 − 0.281i)7-s + (−4.89 + 3.14i)8-s + (0.415 + 0.909i)9-s + (−2.41 + 0.708i)10-s + (0.0756 − 0.0872i)11-s + (−2.82 + 3.26i)12-s + (1.24 − 0.366i)13-s + (−1.04 − 2.28i)14-s + (−0.841 + 0.540i)15-s + (−5.75 − 1.69i)16-s + (−0.556 − 3.87i)17-s + ⋯
L(s)  = 1  + (1.16 + 1.34i)2-s + (0.485 + 0.312i)3-s + (−0.307 + 2.13i)4-s + (−0.185 + 0.406i)5-s + (0.146 + 1.01i)6-s + (−0.362 − 0.106i)7-s + (−1.73 + 1.11i)8-s + (0.138 + 0.303i)9-s + (−0.762 + 0.223i)10-s + (0.0227 − 0.0263i)11-s + (−0.816 + 0.941i)12-s + (0.345 − 0.101i)13-s + (−0.279 − 0.611i)14-s + (−0.217 + 0.139i)15-s + (−1.43 − 0.422i)16-s + (−0.135 − 0.939i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.888 - 0.458i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.888 - 0.458i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $-0.888 - 0.458i$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{483} (358, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ -0.888 - 0.458i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.644451 + 2.65339i\)
\(L(\frac12)\) \(\approx\) \(0.644451 + 2.65339i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.841 - 0.540i)T \)
7 \( 1 + (0.959 + 0.281i)T \)
23 \( 1 + (-4.67 + 1.07i)T \)
good2 \( 1 + (-1.64 - 1.89i)T + (-0.284 + 1.97i)T^{2} \)
5 \( 1 + (0.415 - 0.909i)T + (-3.27 - 3.77i)T^{2} \)
11 \( 1 + (-0.0756 + 0.0872i)T + (-1.56 - 10.8i)T^{2} \)
13 \( 1 + (-1.24 + 0.366i)T + (10.9 - 7.02i)T^{2} \)
17 \( 1 + (0.556 + 3.87i)T + (-16.3 + 4.78i)T^{2} \)
19 \( 1 + (-0.195 + 1.35i)T + (-18.2 - 5.35i)T^{2} \)
29 \( 1 + (-0.291 - 2.02i)T + (-27.8 + 8.17i)T^{2} \)
31 \( 1 + (4.96 - 3.19i)T + (12.8 - 28.1i)T^{2} \)
37 \( 1 + (-0.215 - 0.471i)T + (-24.2 + 27.9i)T^{2} \)
41 \( 1 + (-3.90 + 8.55i)T + (-26.8 - 30.9i)T^{2} \)
43 \( 1 + (5.54 + 3.56i)T + (17.8 + 39.1i)T^{2} \)
47 \( 1 - 5.90T + 47T^{2} \)
53 \( 1 + (4.20 + 1.23i)T + (44.5 + 28.6i)T^{2} \)
59 \( 1 + (-3.46 + 1.01i)T + (49.6 - 31.8i)T^{2} \)
61 \( 1 + (-4.23 + 2.72i)T + (25.3 - 55.4i)T^{2} \)
67 \( 1 + (-9.18 - 10.5i)T + (-9.53 + 66.3i)T^{2} \)
71 \( 1 + (6.24 + 7.20i)T + (-10.1 + 70.2i)T^{2} \)
73 \( 1 + (0.0848 - 0.590i)T + (-70.0 - 20.5i)T^{2} \)
79 \( 1 + (9.06 - 2.66i)T + (66.4 - 42.7i)T^{2} \)
83 \( 1 + (5.33 + 11.6i)T + (-54.3 + 62.7i)T^{2} \)
89 \( 1 + (4.28 + 2.75i)T + (36.9 + 80.9i)T^{2} \)
97 \( 1 + (-3.21 + 7.03i)T + (-63.5 - 73.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.52108904210203568349474427926, −10.54040174542796452726395071789, −9.194895400150449239652103994243, −8.489632817428618238233824663622, −7.15663122475639869555850805231, −7.03050216703305691811793138804, −5.65865074656576041291610233561, −4.82311772426620951149728581797, −3.70403804739330526177862885613, −2.91941146309359990949652329150, 1.26944474738682491758459565163, 2.54912812532898293153801710450, 3.60336848174369651249963354214, 4.44553460926002820326401354246, 5.61273391784012912748947645690, 6.58733794157766764080933635699, 8.043946748518616238266553753401, 9.084858239526924093975496637547, 9.932380890556536568883624531516, 10.88638362474329567175981327573

Graph of the $Z$-function along the critical line