L(s) = 1 | + (1.64 + 1.89i)2-s + (0.841 + 0.540i)3-s + (−0.614 + 4.27i)4-s + (−0.415 + 0.909i)5-s + (0.357 + 2.48i)6-s + (−0.959 − 0.281i)7-s + (−4.89 + 3.14i)8-s + (0.415 + 0.909i)9-s + (−2.41 + 0.708i)10-s + (0.0756 − 0.0872i)11-s + (−2.82 + 3.26i)12-s + (1.24 − 0.366i)13-s + (−1.04 − 2.28i)14-s + (−0.841 + 0.540i)15-s + (−5.75 − 1.69i)16-s + (−0.556 − 3.87i)17-s + ⋯ |
L(s) = 1 | + (1.16 + 1.34i)2-s + (0.485 + 0.312i)3-s + (−0.307 + 2.13i)4-s + (−0.185 + 0.406i)5-s + (0.146 + 1.01i)6-s + (−0.362 − 0.106i)7-s + (−1.73 + 1.11i)8-s + (0.138 + 0.303i)9-s + (−0.762 + 0.223i)10-s + (0.0227 − 0.0263i)11-s + (−0.816 + 0.941i)12-s + (0.345 − 0.101i)13-s + (−0.279 − 0.611i)14-s + (−0.217 + 0.139i)15-s + (−1.43 − 0.422i)16-s + (−0.135 − 0.939i)17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(−0.888−0.458i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(−0.888−0.458i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
−0.888−0.458i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(358,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), −0.888−0.458i)
|
Particular Values
L(1) |
≈ |
0.644451+2.65339i |
L(21) |
≈ |
0.644451+2.65339i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.841−0.540i)T |
| 7 | 1+(0.959+0.281i)T |
| 23 | 1+(−4.67+1.07i)T |
good | 2 | 1+(−1.64−1.89i)T+(−0.284+1.97i)T2 |
| 5 | 1+(0.415−0.909i)T+(−3.27−3.77i)T2 |
| 11 | 1+(−0.0756+0.0872i)T+(−1.56−10.8i)T2 |
| 13 | 1+(−1.24+0.366i)T+(10.9−7.02i)T2 |
| 17 | 1+(0.556+3.87i)T+(−16.3+4.78i)T2 |
| 19 | 1+(−0.195+1.35i)T+(−18.2−5.35i)T2 |
| 29 | 1+(−0.291−2.02i)T+(−27.8+8.17i)T2 |
| 31 | 1+(4.96−3.19i)T+(12.8−28.1i)T2 |
| 37 | 1+(−0.215−0.471i)T+(−24.2+27.9i)T2 |
| 41 | 1+(−3.90+8.55i)T+(−26.8−30.9i)T2 |
| 43 | 1+(5.54+3.56i)T+(17.8+39.1i)T2 |
| 47 | 1−5.90T+47T2 |
| 53 | 1+(4.20+1.23i)T+(44.5+28.6i)T2 |
| 59 | 1+(−3.46+1.01i)T+(49.6−31.8i)T2 |
| 61 | 1+(−4.23+2.72i)T+(25.3−55.4i)T2 |
| 67 | 1+(−9.18−10.5i)T+(−9.53+66.3i)T2 |
| 71 | 1+(6.24+7.20i)T+(−10.1+70.2i)T2 |
| 73 | 1+(0.0848−0.590i)T+(−70.0−20.5i)T2 |
| 79 | 1+(9.06−2.66i)T+(66.4−42.7i)T2 |
| 83 | 1+(5.33+11.6i)T+(−54.3+62.7i)T2 |
| 89 | 1+(4.28+2.75i)T+(36.9+80.9i)T2 |
| 97 | 1+(−3.21+7.03i)T+(−63.5−73.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.52108904210203568349474427926, −10.54040174542796452726395071789, −9.194895400150449239652103994243, −8.489632817428618238233824663622, −7.15663122475639869555850805231, −7.03050216703305691811793138804, −5.65865074656576041291610233561, −4.82311772426620951149728581797, −3.70403804739330526177862885613, −2.91941146309359990949652329150,
1.26944474738682491758459565163, 2.54912812532898293153801710450, 3.60336848174369651249963354214, 4.44553460926002820326401354246, 5.61273391784012912748947645690, 6.58733794157766764080933635699, 8.043946748518616238266553753401, 9.084858239526924093975496637547, 9.932380890556536568883624531516, 10.88638362474329567175981327573