L(s) = 1 | + (−0.544 − 0.627i)2-s + (0.841 + 0.540i)3-s + (0.186 − 1.29i)4-s + (−1.36 + 2.98i)5-s + (−0.118 − 0.822i)6-s + (−0.959 − 0.281i)7-s + (−2.31 + 1.48i)8-s + (0.415 + 0.909i)9-s + (2.62 − 0.769i)10-s + (−0.745 + 0.860i)11-s + (0.857 − 0.989i)12-s + (4.40 − 1.29i)13-s + (0.345 + 0.755i)14-s + (−2.76 + 1.77i)15-s + (−0.321 − 0.0943i)16-s + (0.756 + 5.26i)17-s + ⋯ |
L(s) = 1 | + (−0.384 − 0.443i)2-s + (0.485 + 0.312i)3-s + (0.0931 − 0.648i)4-s + (−0.610 + 1.33i)5-s + (−0.0482 − 0.335i)6-s + (−0.362 − 0.106i)7-s + (−0.817 + 0.525i)8-s + (0.138 + 0.303i)9-s + (0.828 − 0.243i)10-s + (−0.224 + 0.259i)11-s + (0.247 − 0.285i)12-s + (1.22 − 0.358i)13-s + (0.0922 + 0.201i)14-s + (−0.713 + 0.458i)15-s + (−0.0803 − 0.0235i)16-s + (0.183 + 1.27i)17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.432−0.901i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.432−0.901i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.432−0.901i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(358,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.432−0.901i)
|
Particular Values
L(1) |
≈ |
0.858350+0.540123i |
L(21) |
≈ |
0.858350+0.540123i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.841−0.540i)T |
| 7 | 1+(0.959+0.281i)T |
| 23 | 1+(−1.20−4.64i)T |
good | 2 | 1+(0.544+0.627i)T+(−0.284+1.97i)T2 |
| 5 | 1+(1.36−2.98i)T+(−3.27−3.77i)T2 |
| 11 | 1+(0.745−0.860i)T+(−1.56−10.8i)T2 |
| 13 | 1+(−4.40+1.29i)T+(10.9−7.02i)T2 |
| 17 | 1+(−0.756−5.26i)T+(−16.3+4.78i)T2 |
| 19 | 1+(1.11−7.72i)T+(−18.2−5.35i)T2 |
| 29 | 1+(1.10+7.69i)T+(−27.8+8.17i)T2 |
| 31 | 1+(2.20−1.41i)T+(12.8−28.1i)T2 |
| 37 | 1+(−1.90−4.16i)T+(−24.2+27.9i)T2 |
| 41 | 1+(0.343−0.751i)T+(−26.8−30.9i)T2 |
| 43 | 1+(2.23+1.43i)T+(17.8+39.1i)T2 |
| 47 | 1−5.46T+47T2 |
| 53 | 1+(10.0+2.94i)T+(44.5+28.6i)T2 |
| 59 | 1+(−5.91+1.73i)T+(49.6−31.8i)T2 |
| 61 | 1+(−0.526+0.338i)T+(25.3−55.4i)T2 |
| 67 | 1+(1.30+1.50i)T+(−9.53+66.3i)T2 |
| 71 | 1+(−5.90−6.81i)T+(−10.1+70.2i)T2 |
| 73 | 1+(−1.55+10.8i)T+(−70.0−20.5i)T2 |
| 79 | 1+(−4.53+1.33i)T+(66.4−42.7i)T2 |
| 83 | 1+(−2.51−5.50i)T+(−54.3+62.7i)T2 |
| 89 | 1+(11.7+7.53i)T+(36.9+80.9i)T2 |
| 97 | 1+(−1.80+3.95i)T+(−63.5−73.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89177020517382046493271253338, −10.29141095476870992224871606859, −9.726098446024424305060516391084, −8.433293094291204379211799950277, −7.73542682507660204075754085890, −6.43569084040702878504831021405, −5.76344405402304282653993345326, −3.88772951021429901994292136083, −3.21440532522295016008423610663, −1.79660520109270860891510396148,
0.67151439655837106534373602846, 2.79555401029301748140922355139, 3.93126426230636419228962665343, 5.05171057668661951835738466960, 6.52198209474314928315021108868, 7.32363076131191476800840069681, 8.258335084950806562126433027026, 9.048588709826122230622599906488, 9.137933949179806865451622565703, 11.01128860994437782226260666677