L(s) = 1 | + (0.186 + 1.29i)2-s + (0.415 − 0.909i)3-s + (0.273 − 0.0801i)4-s + (1.65 − 1.90i)5-s + (1.25 + 0.368i)6-s + (0.841 − 0.540i)7-s + (1.24 + 2.72i)8-s + (−0.654 − 0.755i)9-s + (2.77 + 1.78i)10-s + (0.470 − 3.27i)11-s + (0.0405 − 0.281i)12-s + (−2.21 − 1.42i)13-s + (0.857 + 0.989i)14-s + (−1.04 − 2.29i)15-s + (−2.81 + 1.81i)16-s + (−2.87 − 0.843i)17-s + ⋯ |
L(s) = 1 | + (0.131 + 0.916i)2-s + (0.239 − 0.525i)3-s + (0.136 − 0.0400i)4-s + (0.738 − 0.852i)5-s + (0.513 + 0.150i)6-s + (0.317 − 0.204i)7-s + (0.439 + 0.962i)8-s + (−0.218 − 0.251i)9-s + (0.878 + 0.564i)10-s + (0.141 − 0.986i)11-s + (0.0116 − 0.0813i)12-s + (−0.615 − 0.395i)13-s + (0.229 + 0.264i)14-s + (−0.270 − 0.592i)15-s + (−0.704 + 0.452i)16-s + (−0.696 − 0.204i)17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.999+0.0131i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.999+0.0131i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.999+0.0131i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(463,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.999+0.0131i)
|
Particular Values
L(1) |
≈ |
2.07502−0.0136880i |
L(21) |
≈ |
2.07502−0.0136880i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.415+0.909i)T |
| 7 | 1+(−0.841+0.540i)T |
| 23 | 1+(−4.63−1.24i)T |
good | 2 | 1+(−0.186−1.29i)T+(−1.91+0.563i)T2 |
| 5 | 1+(−1.65+1.90i)T+(−0.711−4.94i)T2 |
| 11 | 1+(−0.470+3.27i)T+(−10.5−3.09i)T2 |
| 13 | 1+(2.21+1.42i)T+(5.40+11.8i)T2 |
| 17 | 1+(2.87+0.843i)T+(14.3+9.19i)T2 |
| 19 | 1+(4.39−1.29i)T+(15.9−10.2i)T2 |
| 29 | 1+(−8.79−2.58i)T+(24.3+15.6i)T2 |
| 31 | 1+(0.0842+0.184i)T+(−20.3+23.4i)T2 |
| 37 | 1+(1.42+1.63i)T+(−5.26+36.6i)T2 |
| 41 | 1+(8.17−9.43i)T+(−5.83−40.5i)T2 |
| 43 | 1+(3.94−8.63i)T+(−28.1−32.4i)T2 |
| 47 | 1−5.57T+47T2 |
| 53 | 1+(−8.67+5.57i)T+(22.0−48.2i)T2 |
| 59 | 1+(−1.24−0.800i)T+(24.5+53.6i)T2 |
| 61 | 1+(−1.38−3.03i)T+(−39.9+46.1i)T2 |
| 67 | 1+(−1.58−11.0i)T+(−64.2+18.8i)T2 |
| 71 | 1+(−1.08−7.53i)T+(−68.1+20.0i)T2 |
| 73 | 1+(−4.67+1.37i)T+(61.4−39.4i)T2 |
| 79 | 1+(14.2+9.15i)T+(32.8+71.8i)T2 |
| 83 | 1+(3.75+4.33i)T+(−11.8+82.1i)T2 |
| 89 | 1+(−5.48+12.0i)T+(−58.2−67.2i)T2 |
| 97 | 1+(4.55−5.26i)T+(−13.8−96.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.03342253051575294403904232342, −10.01214448436424253875122874567, −8.633815426172076502267935631024, −8.425260166276038398046383021823, −7.17008357996907649071297184231, −6.40567110014006875909810713390, −5.48833617109183890219692848179, −4.66976109054865085698520687607, −2.73332811052003537948259590766, −1.36727850234478730778449611855,
2.07913971279402450357802337394, 2.60282000933952006111123696448, 4.01347824809972523090618578441, 4.96228394547578409615514780591, 6.58561338655097336022482653670, 7.04959112165078693888268134538, 8.576322384558449647590287134900, 9.537838842952437638828251073265, 10.46939108887195713075508319550, 10.62575509024024573414754814327