L(s) = 1 | + (0.454 + 1.54i)2-s + (−0.712 + 1.57i)3-s + (−0.504 + 0.323i)4-s + (−0.562 − 3.91i)5-s + (−2.76 − 0.385i)6-s + (−1.48 − 2.18i)7-s + (1.70 + 1.47i)8-s + (−1.98 − 2.25i)9-s + (5.79 − 2.64i)10-s + (0.644 − 2.19i)11-s + (−0.152 − 1.02i)12-s + (1.76 − 0.807i)13-s + (2.70 − 3.29i)14-s + (6.57 + 1.90i)15-s + (−2.01 + 4.40i)16-s + (6.25 + 4.01i)17-s + ⋯ |
L(s) = 1 | + (0.321 + 1.09i)2-s + (−0.411 + 0.911i)3-s + (−0.252 + 0.161i)4-s + (−0.251 − 1.74i)5-s + (−1.12 − 0.157i)6-s + (−0.562 − 0.826i)7-s + (0.603 + 0.522i)8-s + (−0.661 − 0.750i)9-s + (1.83 − 0.836i)10-s + (0.194 − 0.662i)11-s + (−0.0438 − 0.296i)12-s + (0.490 − 0.224i)13-s + (0.723 − 0.880i)14-s + (1.69 + 0.490i)15-s + (−0.502 + 1.10i)16-s + (1.51 + 0.974i)17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.977−0.210i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.977−0.210i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.977−0.210i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(377,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.977−0.210i)
|
Particular Values
L(1) |
≈ |
1.38463+0.147041i |
L(21) |
≈ |
1.38463+0.147041i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.712−1.57i)T |
| 7 | 1+(1.48+2.18i)T |
| 23 | 1+(−3.42+3.35i)T |
good | 2 | 1+(−0.454−1.54i)T+(−1.68+1.08i)T2 |
| 5 | 1+(0.562+3.91i)T+(−4.79+1.40i)T2 |
| 11 | 1+(−0.644+2.19i)T+(−9.25−5.94i)T2 |
| 13 | 1+(−1.76+0.807i)T+(8.51−9.82i)T2 |
| 17 | 1+(−6.25−4.01i)T+(7.06+15.4i)T2 |
| 19 | 1+(2.11+3.29i)T+(−7.89+17.2i)T2 |
| 29 | 1+(−0.791+1.23i)T+(−12.0−26.3i)T2 |
| 31 | 1+(4.87+4.22i)T+(4.41+30.6i)T2 |
| 37 | 1+(−0.362+2.52i)T+(−35.5−10.4i)T2 |
| 41 | 1+(0.875+6.09i)T+(−39.3+11.5i)T2 |
| 43 | 1+(2.49+2.87i)T+(−6.11+42.5i)T2 |
| 47 | 1+2.63T+47T2 |
| 53 | 1+(−4.87−2.22i)T+(34.7+40.0i)T2 |
| 59 | 1+(−5.91−12.9i)T+(−38.6+44.5i)T2 |
| 61 | 1+(−10.9−9.44i)T+(8.68+60.3i)T2 |
| 67 | 1+(8.41−2.47i)T+(56.3−36.2i)T2 |
| 71 | 1+(1.65+5.63i)T+(−59.7+38.3i)T2 |
| 73 | 1+(−0.871−1.35i)T+(−30.3+66.4i)T2 |
| 79 | 1+(5.26+11.5i)T+(−51.7+59.7i)T2 |
| 83 | 1+(0.586−4.08i)T+(−79.6−23.3i)T2 |
| 89 | 1+(−4.01−4.63i)T+(−12.6+88.0i)T2 |
| 97 | 1+(3.81−0.548i)T+(93.0−27.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.88468916917657272665483115274, −10.13510344164238024987902900648, −8.907369644540864211944603510030, −8.434865179591303363016274426873, −7.28836685311345267388737832372, −5.99053163963785821023661407035, −5.50194243269742555947712199501, −4.45251020083104027921073398709, −3.74028000329474507291025362459, −0.853666150100695050026034439233,
1.75763006604654875623251681662, 2.88729264771537048153698554718, 3.48183593956013591863588864217, 5.33982733907144747880269257642, 6.56105399451251611224085173533, 7.05141153047334685578918090506, 7.987025830808499595266239418697, 9.649811895274992038081240974201, 10.32598074084948949212206027352, 11.32710522283615484302862769964