L(s) = 1 | + (−0.493 + 1.68i)2-s + (0.151 − 1.72i)3-s + (−0.903 − 0.580i)4-s + (−0.558 + 3.88i)5-s + (2.82 + 1.10i)6-s + (−1.99 − 1.74i)7-s + (−1.22 + 1.06i)8-s + (−2.95 − 0.524i)9-s + (−6.26 − 2.86i)10-s + (−1.22 − 4.17i)11-s + (−1.13 + 1.47i)12-s + (−1.88 − 0.861i)13-s + (3.91 − 2.49i)14-s + (6.62 + 1.55i)15-s + (−2.07 − 4.54i)16-s + (−1.78 + 1.14i)17-s + ⋯ |
L(s) = 1 | + (−0.349 + 1.18i)2-s + (0.0877 − 0.996i)3-s + (−0.451 − 0.290i)4-s + (−0.249 + 1.73i)5-s + (1.15 + 0.452i)6-s + (−0.753 − 0.657i)7-s + (−0.433 + 0.375i)8-s + (−0.984 − 0.174i)9-s + (−1.98 − 0.904i)10-s + (−0.370 − 1.26i)11-s + (−0.328 + 0.424i)12-s + (−0.523 − 0.238i)13-s + (1.04 − 0.666i)14-s + (1.70 + 0.401i)15-s + (−0.518 − 1.13i)16-s + (−0.431 + 0.277i)17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(−0.513+0.857i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(−0.513+0.857i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
−0.513+0.857i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(41,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), −0.513+0.857i)
|
Particular Values
L(1) |
≈ |
0.0503626−0.0888679i |
L(21) |
≈ |
0.0503626−0.0888679i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.151+1.72i)T |
| 7 | 1+(1.99+1.74i)T |
| 23 | 1+(−4.27−2.17i)T |
good | 2 | 1+(0.493−1.68i)T+(−1.68−1.08i)T2 |
| 5 | 1+(0.558−3.88i)T+(−4.79−1.40i)T2 |
| 11 | 1+(1.22+4.17i)T+(−9.25+5.94i)T2 |
| 13 | 1+(1.88+0.861i)T+(8.51+9.82i)T2 |
| 17 | 1+(1.78−1.14i)T+(7.06−15.4i)T2 |
| 19 | 1+(1.42−2.21i)T+(−7.89−17.2i)T2 |
| 29 | 1+(0.621+0.967i)T+(−12.0+26.3i)T2 |
| 31 | 1+(−0.602+0.522i)T+(4.41−30.6i)T2 |
| 37 | 1+(1.02+7.10i)T+(−35.5+10.4i)T2 |
| 41 | 1+(−0.650+4.52i)T+(−39.3−11.5i)T2 |
| 43 | 1+(5.13−5.92i)T+(−6.11−42.5i)T2 |
| 47 | 1+9.37T+47T2 |
| 53 | 1+(8.95−4.09i)T+(34.7−40.0i)T2 |
| 59 | 1+(4.97−10.8i)T+(−38.6−44.5i)T2 |
| 61 | 1+(−3.12+2.70i)T+(8.68−60.3i)T2 |
| 67 | 1+(−7.89−2.31i)T+(56.3+36.2i)T2 |
| 71 | 1+(0.509−1.73i)T+(−59.7−38.3i)T2 |
| 73 | 1+(−0.202+0.315i)T+(−30.3−66.4i)T2 |
| 79 | 1+(0.623−1.36i)T+(−51.7−59.7i)T2 |
| 83 | 1+(−2.36−16.4i)T+(−79.6+23.3i)T2 |
| 89 | 1+(6.73−7.77i)T+(−12.6−88.0i)T2 |
| 97 | 1+(1.26+0.182i)T+(93.0+27.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.28239200519659798773044851898, −10.87839383967539603201968598384, −9.644969246051756436912448720837, −8.397677797627814854662356485027, −7.64920400506735186972109250030, −7.01061216051302074239400446007, −6.41073048922171500228664860127, −5.71519187460177306186477097874, −3.42139923512772847328604392599, −2.67723088902853554840218865686,
0.06257010636379887516061846477, 2.02307061811861521689251343695, 3.23535922143789958958649179397, 4.60639203133252354448512060122, 5.03703852792355663157713340280, 6.58212324082627300284781246906, 8.291564518868112199211996378980, 9.057902641490724392496902157052, 9.561891949919121178939811429022, 10.14265566434746534427957774280