L(s) = 1 | + (−0.601 + 2.04i)2-s + (−0.160 + 1.72i)3-s + (−2.14 − 1.38i)4-s + (−0.358 + 2.49i)5-s + (−3.43 − 1.36i)6-s + (−2.54 + 0.719i)7-s + (0.896 − 0.776i)8-s + (−2.94 − 0.552i)9-s + (−4.88 − 2.23i)10-s + (0.357 + 1.21i)11-s + (2.72 − 3.48i)12-s + (6.26 + 2.86i)13-s + (0.0574 − 5.64i)14-s + (−4.24 − 1.01i)15-s + (−1.07 − 2.34i)16-s + (4.94 − 3.18i)17-s + ⋯ |
L(s) = 1 | + (−0.425 + 1.44i)2-s + (−0.0924 + 0.995i)3-s + (−1.07 − 0.690i)4-s + (−0.160 + 1.11i)5-s + (−1.40 − 0.557i)6-s + (−0.962 + 0.271i)7-s + (0.316 − 0.274i)8-s + (−0.982 − 0.184i)9-s + (−1.54 − 0.706i)10-s + (0.107 + 0.366i)11-s + (0.787 − 1.00i)12-s + (1.73 + 0.793i)13-s + (0.0153 − 1.50i)14-s + (−1.09 − 0.262i)15-s + (−0.267 − 0.586i)16-s + (1.20 − 0.771i)17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.0800+0.996i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.0800+0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.0800+0.996i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(41,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.0800+0.996i)
|
Particular Values
L(1) |
≈ |
0.550514−0.508063i |
L(21) |
≈ |
0.550514−0.508063i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.160−1.72i)T |
| 7 | 1+(2.54−0.719i)T |
| 23 | 1+(3.20+3.57i)T |
good | 2 | 1+(0.601−2.04i)T+(−1.68−1.08i)T2 |
| 5 | 1+(0.358−2.49i)T+(−4.79−1.40i)T2 |
| 11 | 1+(−0.357−1.21i)T+(−9.25+5.94i)T2 |
| 13 | 1+(−6.26−2.86i)T+(8.51+9.82i)T2 |
| 17 | 1+(−4.94+3.18i)T+(7.06−15.4i)T2 |
| 19 | 1+(2.59−4.03i)T+(−7.89−17.2i)T2 |
| 29 | 1+(−2.68−4.17i)T+(−12.0+26.3i)T2 |
| 31 | 1+(1.68−1.46i)T+(4.41−30.6i)T2 |
| 37 | 1+(0.484+3.37i)T+(−35.5+10.4i)T2 |
| 41 | 1+(0.362−2.52i)T+(−39.3−11.5i)T2 |
| 43 | 1+(−0.810+0.935i)T+(−6.11−42.5i)T2 |
| 47 | 1+4.02T+47T2 |
| 53 | 1+(5.33−2.43i)T+(34.7−40.0i)T2 |
| 59 | 1+(1.15−2.52i)T+(−38.6−44.5i)T2 |
| 61 | 1+(−2.90+2.51i)T+(8.68−60.3i)T2 |
| 67 | 1+(−10.4−3.07i)T+(56.3+36.2i)T2 |
| 71 | 1+(−4.05+13.8i)T+(−59.7−38.3i)T2 |
| 73 | 1+(8.37−13.0i)T+(−30.3−66.4i)T2 |
| 79 | 1+(1.68−3.68i)T+(−51.7−59.7i)T2 |
| 83 | 1+(0.734+5.10i)T+(−79.6+23.3i)T2 |
| 89 | 1+(8.18−9.44i)T+(−12.6−88.0i)T2 |
| 97 | 1+(10.8+1.56i)T+(93.0+27.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.39538114726398853757968438002, −10.47062008102648934216900678864, −9.720649286306336649783117932529, −8.901375085689388451212813204024, −8.088577904620492956553109123246, −6.81965529583992685549360807401, −6.32224383309887311125634385626, −5.50028884090722291614366795648, −3.99547395841661776382812241759, −3.02899231875042393883519878830,
0.57212326680893242573649941484, 1.45109033065118518363308535829, 3.05452783817681253912388120132, 3.91053282994385218359053107275, 5.68166759285141247660612057512, 6.47632989165145711588869107392, 8.091742016149297796143615899557, 8.540904598484701760388643164237, 9.483643178774603888903850626001, 10.46781952803526575331894080860