Properties

Label 2-483-23.22-c2-0-0
Degree $2$
Conductor $483$
Sign $-0.979 - 0.200i$
Analytic cond. $13.1607$
Root an. cond. $3.62778$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.984·2-s + 1.73·3-s − 3.03·4-s − 2.95i·5-s − 1.70·6-s + 2.64i·7-s + 6.91·8-s + 2.99·9-s + 2.91i·10-s + 1.64i·11-s − 5.25·12-s − 20.6·13-s − 2.60i·14-s − 5.12i·15-s + 5.31·16-s + 1.80i·17-s + ⋯
L(s)  = 1  − 0.492·2-s + 0.577·3-s − 0.757·4-s − 0.591i·5-s − 0.284·6-s + 0.377i·7-s + 0.864·8-s + 0.333·9-s + 0.291i·10-s + 0.149i·11-s − 0.437·12-s − 1.58·13-s − 0.185i·14-s − 0.341i·15-s + 0.332·16-s + 0.106i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.979 - 0.200i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.979 - 0.200i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $-0.979 - 0.200i$
Analytic conductor: \(13.1607\)
Root analytic conductor: \(3.62778\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{483} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1),\ -0.979 - 0.200i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.006802771624\)
\(L(\frac12)\) \(\approx\) \(0.006802771624\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 1.73T \)
7 \( 1 - 2.64iT \)
23 \( 1 + (4.61 - 22.5i)T \)
good2 \( 1 + 0.984T + 4T^{2} \)
5 \( 1 + 2.95iT - 25T^{2} \)
11 \( 1 - 1.64iT - 121T^{2} \)
13 \( 1 + 20.6T + 169T^{2} \)
17 \( 1 - 1.80iT - 289T^{2} \)
19 \( 1 + 30.5iT - 361T^{2} \)
29 \( 1 + 23.0T + 841T^{2} \)
31 \( 1 + 46.3T + 961T^{2} \)
37 \( 1 - 61.7iT - 1.36e3T^{2} \)
41 \( 1 + 46.0T + 1.68e3T^{2} \)
43 \( 1 - 47.1iT - 1.84e3T^{2} \)
47 \( 1 + 77.1T + 2.20e3T^{2} \)
53 \( 1 + 75.2iT - 2.80e3T^{2} \)
59 \( 1 + 59.3T + 3.48e3T^{2} \)
61 \( 1 + 13.6iT - 3.72e3T^{2} \)
67 \( 1 + 24.4iT - 4.48e3T^{2} \)
71 \( 1 + 24.4T + 5.04e3T^{2} \)
73 \( 1 + 5.03T + 5.32e3T^{2} \)
79 \( 1 + 120. iT - 6.24e3T^{2} \)
83 \( 1 - 84.7iT - 6.88e3T^{2} \)
89 \( 1 - 62.8iT - 7.92e3T^{2} \)
97 \( 1 + 49.7iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.08429527950794124134206916632, −9.755334812918075526876101537847, −9.473858624215313780108587392304, −8.632189965625352981490990496368, −7.80547473430492519376896119792, −6.92216162665573953992695156110, −5.13555752060625131960487022283, −4.71902673743281691485566320792, −3.21572502277770580469742616645, −1.72526143392981970156427337009, 0.00300831279112797365516213997, 1.91448250031726429109686698545, 3.38350823577132294086697434302, 4.39305022096838214647645009555, 5.55265568225939261945130921530, 7.09531371638641124322038303506, 7.65003780968628083199729702233, 8.611000945728733094382481918367, 9.505649019472820800870335974827, 10.19416725999346437328548031567

Graph of the $Z$-function along the critical line