L(s) = 1 | − 0.984·2-s + 1.73·3-s − 3.03·4-s − 2.95i·5-s − 1.70·6-s + 2.64i·7-s + 6.91·8-s + 2.99·9-s + 2.91i·10-s + 1.64i·11-s − 5.25·12-s − 20.6·13-s − 2.60i·14-s − 5.12i·15-s + 5.31·16-s + 1.80i·17-s + ⋯ |
L(s) = 1 | − 0.492·2-s + 0.577·3-s − 0.757·4-s − 0.591i·5-s − 0.284·6-s + 0.377i·7-s + 0.864·8-s + 0.333·9-s + 0.291i·10-s + 0.149i·11-s − 0.437·12-s − 1.58·13-s − 0.185i·14-s − 0.341i·15-s + 0.332·16-s + 0.106i·17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(−0.979−0.200i)Λ(3−s)
Λ(s)=(=(483s/2ΓC(s+1)L(s)(−0.979−0.200i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
−0.979−0.200i
|
Analytic conductor: |
13.1607 |
Root analytic conductor: |
3.62778 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1), −0.979−0.200i)
|
Particular Values
L(23) |
≈ |
0.006802771624 |
L(21) |
≈ |
0.006802771624 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−1.73T |
| 7 | 1−2.64iT |
| 23 | 1+(4.61−22.5i)T |
good | 2 | 1+0.984T+4T2 |
| 5 | 1+2.95iT−25T2 |
| 11 | 1−1.64iT−121T2 |
| 13 | 1+20.6T+169T2 |
| 17 | 1−1.80iT−289T2 |
| 19 | 1+30.5iT−361T2 |
| 29 | 1+23.0T+841T2 |
| 31 | 1+46.3T+961T2 |
| 37 | 1−61.7iT−1.36e3T2 |
| 41 | 1+46.0T+1.68e3T2 |
| 43 | 1−47.1iT−1.84e3T2 |
| 47 | 1+77.1T+2.20e3T2 |
| 53 | 1+75.2iT−2.80e3T2 |
| 59 | 1+59.3T+3.48e3T2 |
| 61 | 1+13.6iT−3.72e3T2 |
| 67 | 1+24.4iT−4.48e3T2 |
| 71 | 1+24.4T+5.04e3T2 |
| 73 | 1+5.03T+5.32e3T2 |
| 79 | 1+120.iT−6.24e3T2 |
| 83 | 1−84.7iT−6.88e3T2 |
| 89 | 1−62.8iT−7.92e3T2 |
| 97 | 1+49.7iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.08429527950794124134206916632, −9.755334812918075526876101537847, −9.473858624215313780108587392304, −8.632189965625352981490990496368, −7.80547473430492519376896119792, −6.92216162665573953992695156110, −5.13555752060625131960487022283, −4.71902673743281691485566320792, −3.21572502277770580469742616645, −1.72526143392981970156427337009,
0.00300831279112797365516213997, 1.91448250031726429109686698545, 3.38350823577132294086697434302, 4.39305022096838214647645009555, 5.55265568225939261945130921530, 7.09531371638641124322038303506, 7.65003780968628083199729702233, 8.611000945728733094382481918367, 9.505649019472820800870335974827, 10.19416725999346437328548031567