L(s) = 1 | + 3.67·2-s − 1.73·3-s + 9.51·4-s − 1.72i·5-s − 6.36·6-s − 2.64i·7-s + 20.2·8-s + 2.99·9-s − 6.33i·10-s + 17.8i·11-s − 16.4·12-s + 23.2·13-s − 9.72i·14-s + 2.98i·15-s + 36.4·16-s − 19.8i·17-s + ⋯ |
L(s) = 1 | + 1.83·2-s − 0.577·3-s + 2.37·4-s − 0.344i·5-s − 1.06·6-s − 0.377i·7-s + 2.53·8-s + 0.333·9-s − 0.633i·10-s + 1.62i·11-s − 1.37·12-s + 1.78·13-s − 0.694i·14-s + 0.198i·15-s + 2.27·16-s − 1.16i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 + 0.195i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.980 + 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(4.750121533\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.750121533\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 1.73T \) |
| 7 | \( 1 + 2.64iT \) |
| 23 | \( 1 + (-4.49 + 22.5i)T \) |
good | 2 | \( 1 - 3.67T + 4T^{2} \) |
| 5 | \( 1 + 1.72iT - 25T^{2} \) |
| 11 | \( 1 - 17.8iT - 121T^{2} \) |
| 13 | \( 1 - 23.2T + 169T^{2} \) |
| 17 | \( 1 + 19.8iT - 289T^{2} \) |
| 19 | \( 1 + 10.9iT - 361T^{2} \) |
| 29 | \( 1 + 25.8T + 841T^{2} \) |
| 31 | \( 1 + 27.7T + 961T^{2} \) |
| 37 | \( 1 - 61.2iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 10.7T + 1.68e3T^{2} \) |
| 43 | \( 1 + 19.1iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 40.2T + 2.20e3T^{2} \) |
| 53 | \( 1 - 87.8iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 87.9T + 3.48e3T^{2} \) |
| 61 | \( 1 - 80.0iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 31.0iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 46.0T + 5.04e3T^{2} \) |
| 73 | \( 1 + 84.2T + 5.32e3T^{2} \) |
| 79 | \( 1 + 101. iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 106. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 85.1iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 12.6iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.10571094712766904675436965739, −10.34286821742796285780458064211, −9.002458442875594894141346731464, −7.39814682326540242283577929516, −6.78355294929494204795937517702, −5.85241061498483635917735278017, −4.77491088504896760790266081959, −4.33972806839093286710403294947, −3.01726358393163580018145132079, −1.48986157988840549205358630514,
1.62846746555243034564852553727, 3.39862100347604174286351474996, 3.75710353938347465687704846806, 5.32521546313882426152255965719, 5.98637816054140135835679317724, 6.40270344002285700116915975399, 7.76688529606524437157753226497, 8.907869685792389335044248071317, 10.71049167433129668350487261777, 11.05105110463729454716786621273