L(s) = 1 | + 3.67·2-s − 1.73·3-s + 9.51·4-s − 1.72i·5-s − 6.36·6-s − 2.64i·7-s + 20.2·8-s + 2.99·9-s − 6.33i·10-s + 17.8i·11-s − 16.4·12-s + 23.2·13-s − 9.72i·14-s + 2.98i·15-s + 36.4·16-s − 19.8i·17-s + ⋯ |
L(s) = 1 | + 1.83·2-s − 0.577·3-s + 2.37·4-s − 0.344i·5-s − 1.06·6-s − 0.377i·7-s + 2.53·8-s + 0.333·9-s − 0.633i·10-s + 1.62i·11-s − 1.37·12-s + 1.78·13-s − 0.694i·14-s + 0.198i·15-s + 2.27·16-s − 1.16i·17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.980+0.195i)Λ(3−s)
Λ(s)=(=(483s/2ΓC(s+1)L(s)(0.980+0.195i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.980+0.195i
|
Analytic conductor: |
13.1607 |
Root analytic conductor: |
3.62778 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1), 0.980+0.195i)
|
Particular Values
L(23) |
≈ |
4.750121533 |
L(21) |
≈ |
4.750121533 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+1.73T |
| 7 | 1+2.64iT |
| 23 | 1+(−4.49+22.5i)T |
good | 2 | 1−3.67T+4T2 |
| 5 | 1+1.72iT−25T2 |
| 11 | 1−17.8iT−121T2 |
| 13 | 1−23.2T+169T2 |
| 17 | 1+19.8iT−289T2 |
| 19 | 1+10.9iT−361T2 |
| 29 | 1+25.8T+841T2 |
| 31 | 1+27.7T+961T2 |
| 37 | 1−61.2iT−1.36e3T2 |
| 41 | 1−10.7T+1.68e3T2 |
| 43 | 1+19.1iT−1.84e3T2 |
| 47 | 1+40.2T+2.20e3T2 |
| 53 | 1−87.8iT−2.80e3T2 |
| 59 | 1+87.9T+3.48e3T2 |
| 61 | 1−80.0iT−3.72e3T2 |
| 67 | 1−31.0iT−4.48e3T2 |
| 71 | 1+46.0T+5.04e3T2 |
| 73 | 1+84.2T+5.32e3T2 |
| 79 | 1+101.iT−6.24e3T2 |
| 83 | 1−106.iT−6.88e3T2 |
| 89 | 1+85.1iT−7.92e3T2 |
| 97 | 1+12.6iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.10571094712766904675436965739, −10.34286821742796285780458064211, −9.002458442875594894141346731464, −7.39814682326540242283577929516, −6.78355294929494204795937517702, −5.85241061498483635917735278017, −4.77491088504896760790266081959, −4.33972806839093286710403294947, −3.01726358393163580018145132079, −1.48986157988840549205358630514,
1.62846746555243034564852553727, 3.39862100347604174286351474996, 3.75710353938347465687704846806, 5.32521546313882426152255965719, 5.98637816054140135835679317724, 6.40270344002285700116915975399, 7.76688529606524437157753226497, 8.907869685792389335044248071317, 10.71049167433129668350487261777, 11.05105110463729454716786621273