Properties

Label 2-483-1.1-c3-0-30
Degree $2$
Conductor $483$
Sign $-1$
Analytic cond. $28.4979$
Root an. cond. $5.33834$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.70·2-s + 3·3-s − 0.701·4-s − 19.3·5-s − 8.10·6-s − 7·7-s + 23.5·8-s + 9·9-s + 52.2·10-s − 16.2·11-s − 2.10·12-s + 70.0·13-s + 18.9·14-s − 58.0·15-s − 57.8·16-s + 24.6·17-s − 24.3·18-s + 127.·19-s + 13.5·20-s − 21·21-s + 43.9·22-s − 23·23-s + 70.5·24-s + 249.·25-s − 189.·26-s + 27·27-s + 4.91·28-s + ⋯
L(s)  = 1  − 0.955·2-s + 0.577·3-s − 0.0876·4-s − 1.73·5-s − 0.551·6-s − 0.377·7-s + 1.03·8-s + 0.333·9-s + 1.65·10-s − 0.445·11-s − 0.0506·12-s + 1.49·13-s + 0.361·14-s − 0.999·15-s − 0.904·16-s + 0.351·17-s − 0.318·18-s + 1.53·19-s + 0.151·20-s − 0.218·21-s + 0.425·22-s − 0.208·23-s + 0.599·24-s + 1.99·25-s − 1.42·26-s + 0.192·27-s + 0.0331·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(28.4979\)
Root analytic conductor: \(5.33834\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 483,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
7 \( 1 + 7T \)
23 \( 1 + 23T \)
good2 \( 1 + 2.70T + 8T^{2} \)
5 \( 1 + 19.3T + 125T^{2} \)
11 \( 1 + 16.2T + 1.33e3T^{2} \)
13 \( 1 - 70.0T + 2.19e3T^{2} \)
17 \( 1 - 24.6T + 4.91e3T^{2} \)
19 \( 1 - 127.T + 6.85e3T^{2} \)
29 \( 1 - 98.4T + 2.43e4T^{2} \)
31 \( 1 + 317.T + 2.97e4T^{2} \)
37 \( 1 + 336.T + 5.06e4T^{2} \)
41 \( 1 + 390.T + 6.89e4T^{2} \)
43 \( 1 - 278.T + 7.95e4T^{2} \)
47 \( 1 + 163.T + 1.03e5T^{2} \)
53 \( 1 + 58.1T + 1.48e5T^{2} \)
59 \( 1 - 25.4T + 2.05e5T^{2} \)
61 \( 1 - 398.T + 2.26e5T^{2} \)
67 \( 1 - 1.04e3T + 3.00e5T^{2} \)
71 \( 1 + 929.T + 3.57e5T^{2} \)
73 \( 1 + 875.T + 3.89e5T^{2} \)
79 \( 1 + 303.T + 4.93e5T^{2} \)
83 \( 1 - 865.T + 5.71e5T^{2} \)
89 \( 1 + 1.21e3T + 7.04e5T^{2} \)
97 \( 1 - 20.9T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02562859824924931168261933103, −8.936152234808468189986560074037, −8.410007074287913536928053643161, −7.65523948166021950572783036533, −7.01010355813711154498826316161, −5.23274762230016573436888978801, −3.90506151367073209296134336369, −3.32908642876575004106064498578, −1.24932549400161210994993597944, 0, 1.24932549400161210994993597944, 3.32908642876575004106064498578, 3.90506151367073209296134336369, 5.23274762230016573436888978801, 7.01010355813711154498826316161, 7.65523948166021950572783036533, 8.410007074287913536928053643161, 8.936152234808468189986560074037, 10.02562859824924931168261933103

Graph of the $Z$-function along the critical line