L(s) = 1 | − 4.43·3-s + 6.56·5-s − 11.5i·7-s + 10.6·9-s + 5.05i·13-s − 29.1·15-s + 8.56i·17-s − 10.8i·19-s + 51.0i·21-s + 11.7·23-s + 18.0·25-s − 7.47·27-s − 20.2i·29-s − 36.4·31-s − 75.5i·35-s + ⋯ |
L(s) = 1 | − 1.47·3-s + 1.31·5-s − 1.64i·7-s + 1.18·9-s + 0.389i·13-s − 1.94·15-s + 0.504i·17-s − 0.570i·19-s + 2.43i·21-s + 0.510·23-s + 0.721·25-s − 0.276·27-s − 0.697i·29-s − 1.17·31-s − 2.15i·35-s + ⋯ |
Λ(s)=(=(484s/2ΓC(s)L(s)(−0.372+0.927i)Λ(3−s)
Λ(s)=(=(484s/2ΓC(s+1)L(s)(−0.372+0.927i)Λ(1−s)
Degree: |
2 |
Conductor: |
484
= 22⋅112
|
Sign: |
−0.372+0.927i
|
Analytic conductor: |
13.1880 |
Root analytic conductor: |
3.63153 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ484(241,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 484, ( :1), −0.372+0.927i)
|
Particular Values
L(23) |
≈ |
0.9811191578 |
L(21) |
≈ |
0.9811191578 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1+4.43T+9T2 |
| 5 | 1−6.56T+25T2 |
| 7 | 1+11.5iT−49T2 |
| 13 | 1−5.05iT−169T2 |
| 17 | 1−8.56iT−289T2 |
| 19 | 1+10.8iT−361T2 |
| 23 | 1−11.7T+529T2 |
| 29 | 1+20.2iT−841T2 |
| 31 | 1+36.4T+961T2 |
| 37 | 1+36.8T+1.36e3T2 |
| 41 | 1+42.3iT−1.68e3T2 |
| 43 | 1+72.4iT−1.84e3T2 |
| 47 | 1+10.9T+2.20e3T2 |
| 53 | 1−72.3T+2.80e3T2 |
| 59 | 1−4.47T+3.48e3T2 |
| 61 | 1+108.iT−3.72e3T2 |
| 67 | 1+37.6T+4.48e3T2 |
| 71 | 1+53.6T+5.04e3T2 |
| 73 | 1−24.9iT−5.32e3T2 |
| 79 | 1+71.2iT−6.24e3T2 |
| 83 | 1+11.5iT−6.88e3T2 |
| 89 | 1+75.6T+7.92e3T2 |
| 97 | 1−2.98T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.53986895209614651394800334115, −10.01321718344032432542646329171, −8.926191241860100055354530520760, −7.28430934516203665417317863677, −6.71428603210220761508290121020, −5.78459495889418125656315867711, −4.97846393406741564087569133275, −3.85733576990677011411810571631, −1.78819701777217851936192339916, −0.49134607663686539118241760768,
1.52212080844269529631277462917, 2.82070078764230200512506984891, 4.90559303342721170960610400305, 5.65000161639164385107107706129, 5.95996612902976166460769862948, 7.02308696374759842574199556503, 8.583684602554701720995334796139, 9.429163713417495942077310812540, 10.20819994161950083741146085016, 11.11809886385823390104844774280