L(s) = 1 | − 3·3-s − 4·5-s + 7-s + 6·9-s − 5·13-s + 12·15-s − 5·17-s − 19-s − 3·21-s − 3·23-s + 11·25-s − 9·27-s + 7·29-s − 10·31-s − 4·35-s − 2·37-s + 15·39-s + 6·41-s − 4·43-s − 24·45-s − 8·47-s − 6·49-s + 15·51-s − 9·53-s + 3·57-s + 59-s − 2·61-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 1.78·5-s + 0.377·7-s + 2·9-s − 1.38·13-s + 3.09·15-s − 1.21·17-s − 0.229·19-s − 0.654·21-s − 0.625·23-s + 11/5·25-s − 1.73·27-s + 1.29·29-s − 1.79·31-s − 0.676·35-s − 0.328·37-s + 2.40·39-s + 0.937·41-s − 0.609·43-s − 3.57·45-s − 1.16·47-s − 6/7·49-s + 2.10·51-s − 1.23·53-s + 0.397·57-s + 0.130·59-s − 0.256·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 3 | \( 1 + p T + p T^{2} \) |
| 5 | \( 1 + 4 T + p T^{2} \) |
| 7 | \( 1 - T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 5 T + p T^{2} \) |
| 17 | \( 1 + 5 T + p T^{2} \) |
| 23 | \( 1 + 3 T + p T^{2} \) |
| 29 | \( 1 - 7 T + p T^{2} \) |
| 31 | \( 1 + 10 T + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 - 6 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 + 9 T + p T^{2} \) |
| 59 | \( 1 - T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 + 7 T + p T^{2} \) |
| 71 | \( 1 + 12 T + p T^{2} \) |
| 73 | \( 1 + 11 T + p T^{2} \) |
| 79 | \( 1 + 16 T + p T^{2} \) |
| 83 | \( 1 + 14 T + p T^{2} \) |
| 89 | \( 1 - 4 T + p T^{2} \) |
| 97 | \( 1 + 12 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.31356119827090209920186563162, −6.96050154009926310753542083769, −6.12771720442183076443715995433, −5.16714811516110397375730854049, −4.50399260125954826557090410675, −4.27434554400806484038081560630, −3.00732477300143878029077665745, −1.58090845027310195677042217505, 0, 0,
1.58090845027310195677042217505, 3.00732477300143878029077665745, 4.27434554400806484038081560630, 4.50399260125954826557090410675, 5.16714811516110397375730854049, 6.12771720442183076443715995433, 6.96050154009926310753542083769, 7.31356119827090209920186563162