Properties

Label 2-4896-1.1-c1-0-55
Degree $2$
Conductor $4896$
Sign $-1$
Analytic cond. $39.0947$
Root an. cond. $6.25258$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s + 5·11-s − 13-s + 17-s − 5·19-s + 23-s − 4·25-s + 2·29-s − 2·31-s + 2·35-s + 4·37-s + 5·41-s + 43-s − 3·49-s − 12·53-s − 5·55-s + 10·59-s − 10·61-s + 65-s − 4·67-s − 8·71-s + 12·73-s − 10·77-s + 6·79-s + 8·83-s − 85-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s + 1.50·11-s − 0.277·13-s + 0.242·17-s − 1.14·19-s + 0.208·23-s − 4/5·25-s + 0.371·29-s − 0.359·31-s + 0.338·35-s + 0.657·37-s + 0.780·41-s + 0.152·43-s − 3/7·49-s − 1.64·53-s − 0.674·55-s + 1.30·59-s − 1.28·61-s + 0.124·65-s − 0.488·67-s − 0.949·71-s + 1.40·73-s − 1.13·77-s + 0.675·79-s + 0.878·83-s − 0.108·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4896\)    =    \(2^{5} \cdot 3^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(39.0947\)
Root analytic conductor: \(6.25258\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4896,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 - T \)
good5 \( 1 + T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
19 \( 1 + 5 T + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 12 T + p T^{2} \)
79 \( 1 - 6 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.907623329233303902109547187224, −7.12057236198560513846405664270, −6.39863852805448877438135046128, −5.99898544413651539795295578755, −4.79098912758088521265177025201, −4.04772602345486066856015528317, −3.48222454932699347452121909471, −2.44755617113484681220187205717, −1.31055766523076933566859515058, 0, 1.31055766523076933566859515058, 2.44755617113484681220187205717, 3.48222454932699347452121909471, 4.04772602345486066856015528317, 4.79098912758088521265177025201, 5.99898544413651539795295578755, 6.39863852805448877438135046128, 7.12057236198560513846405664270, 7.907623329233303902109547187224

Graph of the $Z$-function along the critical line