Properties

Label 2-4896-1.1-c1-0-36
Degree $2$
Conductor $4896$
Sign $1$
Analytic cond. $39.0947$
Root an. cond. $6.25258$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 4.24·7-s + 1.41·11-s − 4·13-s + 17-s + 2.82·19-s + 4.24·23-s − 25-s + 6·29-s − 7.07·31-s + 8.48·35-s − 2·37-s + 6·41-s − 8.48·43-s + 11.3·47-s + 10.9·49-s + 6·53-s + 2.82·55-s − 8.48·59-s + 6·61-s − 8·65-s + 5.65·67-s − 7.07·71-s + 10·73-s + 6·77-s + 12.7·79-s − 14.1·83-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.60·7-s + 0.426·11-s − 1.10·13-s + 0.242·17-s + 0.648·19-s + 0.884·23-s − 0.200·25-s + 1.11·29-s − 1.27·31-s + 1.43·35-s − 0.328·37-s + 0.937·41-s − 1.29·43-s + 1.65·47-s + 1.57·49-s + 0.824·53-s + 0.381·55-s − 1.10·59-s + 0.768·61-s − 0.992·65-s + 0.691·67-s − 0.839·71-s + 1.17·73-s + 0.683·77-s + 1.43·79-s − 1.55·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4896\)    =    \(2^{5} \cdot 3^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(39.0947\)
Root analytic conductor: \(6.25258\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4896,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.040712065\)
\(L(\frac12)\) \(\approx\) \(3.040712065\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 - T \)
good5 \( 1 - 2T + 5T^{2} \)
7 \( 1 - 4.24T + 7T^{2} \)
11 \( 1 - 1.41T + 11T^{2} \)
13 \( 1 + 4T + 13T^{2} \)
19 \( 1 - 2.82T + 19T^{2} \)
23 \( 1 - 4.24T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + 7.07T + 31T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 + 8.48T + 43T^{2} \)
47 \( 1 - 11.3T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + 8.48T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 - 5.65T + 67T^{2} \)
71 \( 1 + 7.07T + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 - 12.7T + 79T^{2} \)
83 \( 1 + 14.1T + 83T^{2} \)
89 \( 1 - 8T + 89T^{2} \)
97 \( 1 - 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.239900779541384400026437055018, −7.50447969924708564109505258679, −6.97816031607951331509385936280, −5.93939012329785636914119764507, −5.19785969172403231592485555678, −4.84335814291689097956092733081, −3.82483693447345354328771517770, −2.62349429029595045490590333967, −1.89776442955403834689420296428, −1.03214523144953008050922929443, 1.03214523144953008050922929443, 1.89776442955403834689420296428, 2.62349429029595045490590333967, 3.82483693447345354328771517770, 4.84335814291689097956092733081, 5.19785969172403231592485555678, 5.93939012329785636914119764507, 6.97816031607951331509385936280, 7.50447969924708564109505258679, 8.239900779541384400026437055018

Graph of the $Z$-function along the critical line