Properties

Label 2-490-35.9-c1-0-18
Degree 22
Conductor 490490
Sign 0.9880.152i0.988 - 0.152i
Analytic cond. 3.912663.91266
Root an. cond. 1.978041.97804
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)2-s + (2.12 − 1.22i)3-s + (0.499 + 0.866i)4-s + (1.81 + 1.30i)5-s + 2.44·6-s + 0.999i·8-s + (1.49 − 2.59i)9-s + (0.917 + 2.03i)10-s + (−2.44 − 4.24i)11-s + (2.12 + 1.22i)12-s − 0.449i·13-s + (5.44 + 0.550i)15-s + (−0.5 + 0.866i)16-s + (−1.73 + i)17-s + (2.59 − 1.49i)18-s + (−3.22 + 5.58i)19-s + ⋯
L(s)  = 1  + (0.612 + 0.353i)2-s + (1.22 − 0.707i)3-s + (0.249 + 0.433i)4-s + (0.811 + 0.584i)5-s + 0.999·6-s + 0.353i·8-s + (0.499 − 0.866i)9-s + (0.290 + 0.644i)10-s + (−0.738 − 1.27i)11-s + (0.612 + 0.353i)12-s − 0.124i·13-s + (1.40 + 0.142i)15-s + (−0.125 + 0.216i)16-s + (−0.420 + 0.242i)17-s + (0.612 − 0.353i)18-s + (−0.739 + 1.28i)19-s + ⋯

Functional equation

Λ(s)=(490s/2ΓC(s)L(s)=((0.9880.152i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.152i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(490s/2ΓC(s+1/2)L(s)=((0.9880.152i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.988 - 0.152i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 490490    =    25722 \cdot 5 \cdot 7^{2}
Sign: 0.9880.152i0.988 - 0.152i
Analytic conductor: 3.912663.91266
Root analytic conductor: 1.978041.97804
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ490(79,)\chi_{490} (79, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 490, ( :1/2), 0.9880.152i)(2,\ 490,\ (\ :1/2),\ 0.988 - 0.152i)

Particular Values

L(1)L(1) \approx 3.03720+0.232528i3.03720 + 0.232528i
L(12)L(\frac12) \approx 3.03720+0.232528i3.03720 + 0.232528i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
5 1+(1.811.30i)T 1 + (-1.81 - 1.30i)T
7 1 1
good3 1+(2.12+1.22i)T+(1.52.59i)T2 1 + (-2.12 + 1.22i)T + (1.5 - 2.59i)T^{2}
11 1+(2.44+4.24i)T+(5.5+9.52i)T2 1 + (2.44 + 4.24i)T + (-5.5 + 9.52i)T^{2}
13 1+0.449iT13T2 1 + 0.449iT - 13T^{2}
17 1+(1.73i)T+(8.514.7i)T2 1 + (1.73 - i)T + (8.5 - 14.7i)T^{2}
19 1+(3.225.58i)T+(9.516.4i)T2 1 + (3.22 - 5.58i)T + (-9.5 - 16.4i)T^{2}
23 1+(5.97+3.44i)T+(11.5+19.9i)T2 1 + (5.97 + 3.44i)T + (11.5 + 19.9i)T^{2}
29 12.89T+29T2 1 - 2.89T + 29T^{2}
31 1+(0.449+0.778i)T+(15.5+26.8i)T2 1 + (0.449 + 0.778i)T + (-15.5 + 26.8i)T^{2}
37 1+(1.73+i)T+(18.5+32.0i)T2 1 + (1.73 + i)T + (18.5 + 32.0i)T^{2}
41 110.8T+41T2 1 - 10.8T + 41T^{2}
43 1+8.89iT43T2 1 + 8.89iT - 43T^{2}
47 1+(0.778+0.449i)T+(23.5+40.7i)T2 1 + (0.778 + 0.449i)T + (23.5 + 40.7i)T^{2}
53 1+(0.953+0.550i)T+(26.545.8i)T2 1 + (-0.953 + 0.550i)T + (26.5 - 45.8i)T^{2}
59 1+(3.225.58i)T+(29.5+51.0i)T2 1 + (-3.22 - 5.58i)T + (-29.5 + 51.0i)T^{2}
61 1+(4.22+7.31i)T+(30.552.8i)T2 1 + (-4.22 + 7.31i)T + (-30.5 - 52.8i)T^{2}
67 1+(6.924i)T+(33.558.0i)T2 1 + (6.92 - 4i)T + (33.5 - 58.0i)T^{2}
71 1+10.8T+71T2 1 + 10.8T + 71T^{2}
73 1+(5.973.44i)T+(36.563.2i)T2 1 + (5.97 - 3.44i)T + (36.5 - 63.2i)T^{2}
79 1+(1.442.51i)T+(39.568.4i)T2 1 + (1.44 - 2.51i)T + (-39.5 - 68.4i)T^{2}
83 12.44iT83T2 1 - 2.44iT - 83T^{2}
89 1+(5+8.66i)T+(44.577.0i)T2 1 + (-5 + 8.66i)T + (-44.5 - 77.0i)T^{2}
97 13.79iT97T2 1 - 3.79iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.87187111266764844253248957589, −10.17248898514516029166577760095, −8.801780826255665347991819872010, −8.234571254139816032386461872954, −7.38306539175079733475263343069, −6.27940874187768038126870490055, −5.66851242582104951387829776818, −3.92974511960388575541158503133, −2.86166375789601004525030271409, −2.04334240994385253305281612155, 2.03138564069713966821863161942, 2.78507681104172995137174624243, 4.30935194868626491306859508180, 4.78687288580673638851256134378, 6.08718308715875780005479392281, 7.38201506433324097357726109028, 8.506055264383167743124963974440, 9.383234403523106990313758510424, 9.882742541477205159014513266743, 10.70725252302961327699263635097

Graph of the ZZ-function along the critical line