Properties

Label 2-70e2-1.1-c1-0-56
Degree $2$
Conductor $4900$
Sign $-1$
Analytic cond. $39.1266$
Root an. cond. $6.25513$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·9-s + 6·11-s + 2·13-s − 6·17-s − 8·19-s − 3·23-s − 5·27-s + 3·29-s − 2·31-s + 6·33-s − 8·37-s + 2·39-s + 3·41-s − 5·43-s − 6·51-s − 12·53-s − 8·57-s + 61-s + 7·67-s − 3·69-s − 10·73-s − 4·79-s + 81-s + 3·83-s + 3·87-s + 3·89-s + ⋯
L(s)  = 1  + 0.577·3-s − 2/3·9-s + 1.80·11-s + 0.554·13-s − 1.45·17-s − 1.83·19-s − 0.625·23-s − 0.962·27-s + 0.557·29-s − 0.359·31-s + 1.04·33-s − 1.31·37-s + 0.320·39-s + 0.468·41-s − 0.762·43-s − 0.840·51-s − 1.64·53-s − 1.05·57-s + 0.128·61-s + 0.855·67-s − 0.361·69-s − 1.17·73-s − 0.450·79-s + 1/9·81-s + 0.329·83-s + 0.321·87-s + 0.317·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4900\)    =    \(2^{2} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(39.1266\)
Root analytic conductor: \(6.25513\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4900,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 - T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 + 5 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - T + p T^{2} \)
67 \( 1 - 7 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 3 T + p T^{2} \)
89 \( 1 - 3 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.211270859347756885349671452319, −7.04879334883551896766303355152, −6.40678059519075227049276802788, −6.03236251086300149239737522411, −4.73220950631722382800727147838, −4.04233006113911691325892171640, −3.43864198876714594107947372560, −2.30245811067245526829398566091, −1.60712841656694145068894267650, 0, 1.60712841656694145068894267650, 2.30245811067245526829398566091, 3.43864198876714594107947372560, 4.04233006113911691325892171640, 4.73220950631722382800727147838, 6.03236251086300149239737522411, 6.40678059519075227049276802788, 7.04879334883551896766303355152, 8.211270859347756885349671452319

Graph of the $Z$-function along the critical line