L(s) = 1 | + 3-s − 2·9-s + 6·11-s + 2·13-s − 6·17-s − 8·19-s − 3·23-s − 5·27-s + 3·29-s − 2·31-s + 6·33-s − 8·37-s + 2·39-s + 3·41-s − 5·43-s − 6·51-s − 12·53-s − 8·57-s + 61-s + 7·67-s − 3·69-s − 10·73-s − 4·79-s + 81-s + 3·83-s + 3·87-s + 3·89-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 2/3·9-s + 1.80·11-s + 0.554·13-s − 1.45·17-s − 1.83·19-s − 0.625·23-s − 0.962·27-s + 0.557·29-s − 0.359·31-s + 1.04·33-s − 1.31·37-s + 0.320·39-s + 0.468·41-s − 0.762·43-s − 0.840·51-s − 1.64·53-s − 1.05·57-s + 0.128·61-s + 0.855·67-s − 0.361·69-s − 1.17·73-s − 0.450·79-s + 1/9·81-s + 0.329·83-s + 0.321·87-s + 0.317·89-s + ⋯ |
Λ(s)=(=(4900s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4900s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1 |
good | 3 | 1−T+pT2 |
| 11 | 1−6T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1+8T+pT2 |
| 23 | 1+3T+pT2 |
| 29 | 1−3T+pT2 |
| 31 | 1+2T+pT2 |
| 37 | 1+8T+pT2 |
| 41 | 1−3T+pT2 |
| 43 | 1+5T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+12T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−T+pT2 |
| 67 | 1−7T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+10T+pT2 |
| 79 | 1+4T+pT2 |
| 83 | 1−3T+pT2 |
| 89 | 1−3T+pT2 |
| 97 | 1+10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.211270859347756885349671452319, −7.04879334883551896766303355152, −6.40678059519075227049276802788, −6.03236251086300149239737522411, −4.73220950631722382800727147838, −4.04233006113911691325892171640, −3.43864198876714594107947372560, −2.30245811067245526829398566091, −1.60712841656694145068894267650, 0,
1.60712841656694145068894267650, 2.30245811067245526829398566091, 3.43864198876714594107947372560, 4.04233006113911691325892171640, 4.73220950631722382800727147838, 6.03236251086300149239737522411, 6.40678059519075227049276802788, 7.04879334883551896766303355152, 8.211270859347756885349671452319