L(s) = 1 | − 3·9-s − 4·11-s − 6·29-s + 4·31-s + 10·41-s + 16·59-s + 14·61-s + 16·71-s − 8·79-s − 26·89-s + 12·99-s − 6·101-s − 18·109-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 9-s − 1.20·11-s − 1.11·29-s + 0.718·31-s + 1.56·41-s + 2.08·59-s + 1.79·61-s + 1.89·71-s − 0.900·79-s − 2.75·89-s + 1.20·99-s − 0.597·101-s − 1.72·109-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
Λ(s)=(=(24010000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(24010000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
24010000
= 24⋅54⋅74
|
Sign: |
1
|
Analytic conductor: |
1530.89 |
Root analytic conductor: |
6.25513 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 24010000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.122010517 |
L(21) |
≈ |
1.122010517 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
| 7 | | 1 |
good | 3 | C22 | 1+pT2+p2T4 |
| 11 | C2 | (1+2T+pT2)2 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C2 | (1+pT2)2 |
| 23 | C22 | 1+35T2+p2T4 |
| 29 | C2 | (1+3T+pT2)2 |
| 31 | C2 | (1−2T+pT2)2 |
| 37 | C22 | 1−10T2+p2T4 |
| 41 | C2 | (1−5T+pT2)2 |
| 43 | C22 | 1−85T2+p2T4 |
| 47 | C22 | 1−30T2+p2T4 |
| 53 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 59 | C2 | (1−8T+pT2)2 |
| 61 | C2 | (1−7T+pT2)2 |
| 67 | C22 | 1−125T2+p2T4 |
| 71 | C2 | (1−8T+pT2)2 |
| 73 | C22 | 1+50T2+p2T4 |
| 79 | C2 | (1+4T+pT2)2 |
| 83 | C22 | 1−165T2+p2T4 |
| 89 | C2 | (1+13T+pT2)2 |
| 97 | C22 | 1−94T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.927606384832135505937107537569, −8.244832434877401667982860938815, −7.75819461750138587573321806343, −7.38036159906017304798779246382, −7.11633872769919272074151889212, −6.48257535512681288714544784869, −6.42463364161927056867041349096, −5.64733386520496298938240457734, −5.61406359241653358984327465588, −5.20094445439128630483935361484, −4.97783158302393580326857325548, −4.24254958085369080754719515782, −3.86902306078908157210361053440, −3.70111564415404097309701575085, −2.83743416889672640116737305572, −2.57398002177700183351243545641, −2.48718570798707084033580842034, −1.68351657563366189079604723233, −1.00397152571148135835919303822, −0.32058553311134252531728694303,
0.32058553311134252531728694303, 1.00397152571148135835919303822, 1.68351657563366189079604723233, 2.48718570798707084033580842034, 2.57398002177700183351243545641, 2.83743416889672640116737305572, 3.70111564415404097309701575085, 3.86902306078908157210361053440, 4.24254958085369080754719515782, 4.97783158302393580326857325548, 5.20094445439128630483935361484, 5.61406359241653358984327465588, 5.64733386520496298938240457734, 6.42463364161927056867041349096, 6.48257535512681288714544784869, 7.11633872769919272074151889212, 7.38036159906017304798779246382, 7.75819461750138587573321806343, 8.244832434877401667982860938815, 8.927606384832135505937107537569