L(s) = 1 | + 0.209·2-s − 1.22·3-s − 1.95·4-s − 0.258·6-s − 2.44·7-s − 0.830·8-s − 1.48·9-s − 2.39·11-s + 2.40·12-s − 0.190·13-s − 0.512·14-s + 3.73·16-s + 5.21·17-s − 0.312·18-s + 1.40·19-s + 3.00·21-s − 0.502·22-s − 5.67·23-s + 1.02·24-s − 0.0400·26-s + 5.51·27-s + 4.78·28-s + 8.18·29-s − 1.99·31-s + 2.44·32-s + 2.94·33-s + 1.09·34-s + ⋯ |
L(s) = 1 | + 0.148·2-s − 0.710·3-s − 0.977·4-s − 0.105·6-s − 0.923·7-s − 0.293·8-s − 0.495·9-s − 0.721·11-s + 0.694·12-s − 0.0529·13-s − 0.137·14-s + 0.934·16-s + 1.26·17-s − 0.0735·18-s + 0.322·19-s + 0.656·21-s − 0.107·22-s − 1.18·23-s + 0.208·24-s − 0.00785·26-s + 1.06·27-s + 0.903·28-s + 1.51·29-s − 0.358·31-s + 0.432·32-s + 0.512·33-s + 0.187·34-s + ⋯ |
Λ(s)=(=(4925s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4925s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 197 | 1−T |
good | 2 | 1−0.209T+2T2 |
| 3 | 1+1.22T+3T2 |
| 7 | 1+2.44T+7T2 |
| 11 | 1+2.39T+11T2 |
| 13 | 1+0.190T+13T2 |
| 17 | 1−5.21T+17T2 |
| 19 | 1−1.40T+19T2 |
| 23 | 1+5.67T+23T2 |
| 29 | 1−8.18T+29T2 |
| 31 | 1+1.99T+31T2 |
| 37 | 1−7.49T+37T2 |
| 41 | 1+5.17T+41T2 |
| 43 | 1+3.60T+43T2 |
| 47 | 1−0.599T+47T2 |
| 53 | 1−10.1T+53T2 |
| 59 | 1−3.88T+59T2 |
| 61 | 1−12.5T+61T2 |
| 67 | 1−1.88T+67T2 |
| 71 | 1+3.97T+71T2 |
| 73 | 1−3.17T+73T2 |
| 79 | 1+7.95T+79T2 |
| 83 | 1+8.39T+83T2 |
| 89 | 1+6.48T+89T2 |
| 97 | 1−8.97T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.136318057991017884120372876681, −7.08262591622937181668435882072, −6.21581855049938004139597044590, −5.60930030857261300108653238946, −5.16155892505088371188084739291, −4.21113375255676152658357744908, −3.36265629060283159304357206564, −2.65531691259051274139482461074, −0.941982740346138751930070943118, 0,
0.941982740346138751930070943118, 2.65531691259051274139482461074, 3.36265629060283159304357206564, 4.21113375255676152658357744908, 5.16155892505088371188084739291, 5.60930030857261300108653238946, 6.21581855049938004139597044590, 7.08262591622937181668435882072, 8.136318057991017884120372876681