L(s) = 1 | − 1.93·2-s − 0.393·3-s + 1.75·4-s + 0.762·6-s − 4.57·7-s + 0.481·8-s − 2.84·9-s − 2.65·11-s − 0.689·12-s + 6.10·13-s + 8.85·14-s − 4.43·16-s − 3.76·17-s + 5.51·18-s − 1.25·19-s + 1.79·21-s + 5.14·22-s + 8.79·23-s − 0.189·24-s − 11.8·26-s + 2.30·27-s − 8.00·28-s − 3.88·29-s − 4.36·31-s + 7.62·32-s + 1.04·33-s + 7.29·34-s + ⋯ |
L(s) = 1 | − 1.36·2-s − 0.227·3-s + 0.875·4-s + 0.311·6-s − 1.72·7-s + 0.170·8-s − 0.948·9-s − 0.801·11-s − 0.198·12-s + 1.69·13-s + 2.36·14-s − 1.10·16-s − 0.913·17-s + 1.29·18-s − 0.288·19-s + 0.392·21-s + 1.09·22-s + 1.83·23-s − 0.0387·24-s − 2.31·26-s + 0.442·27-s − 1.51·28-s − 0.720·29-s − 0.783·31-s + 1.34·32-s + 0.182·33-s + 1.25·34-s + ⋯ |
Λ(s)=(=(4925s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4925s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 197 | 1−T |
good | 2 | 1+1.93T+2T2 |
| 3 | 1+0.393T+3T2 |
| 7 | 1+4.57T+7T2 |
| 11 | 1+2.65T+11T2 |
| 13 | 1−6.10T+13T2 |
| 17 | 1+3.76T+17T2 |
| 19 | 1+1.25T+19T2 |
| 23 | 1−8.79T+23T2 |
| 29 | 1+3.88T+29T2 |
| 31 | 1+4.36T+31T2 |
| 37 | 1−2.74T+37T2 |
| 41 | 1−2.33T+41T2 |
| 43 | 1+6.44T+43T2 |
| 47 | 1−0.0382T+47T2 |
| 53 | 1−5.36T+53T2 |
| 59 | 1+4.00T+59T2 |
| 61 | 1−14.5T+61T2 |
| 67 | 1−13.5T+67T2 |
| 71 | 1+0.772T+71T2 |
| 73 | 1−11.9T+73T2 |
| 79 | 1+14.2T+79T2 |
| 83 | 1+10.2T+83T2 |
| 89 | 1−5.99T+89T2 |
| 97 | 1+12.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.226941250497167976600033414437, −7.11678377184883781104172684956, −6.68586192240100697051777816328, −5.96217595274541023465402628428, −5.19543602572875450510220208611, −3.91408077849314882809727692623, −3.12786162217130342047456352035, −2.28699540722660831141221637238, −0.878802522521460609329094736442, 0,
0.878802522521460609329094736442, 2.28699540722660831141221637238, 3.12786162217130342047456352035, 3.91408077849314882809727692623, 5.19543602572875450510220208611, 5.96217595274541023465402628428, 6.68586192240100697051777816328, 7.11678377184883781104172684956, 8.226941250497167976600033414437