Properties

Label 2-4925-1.1-c1-0-121
Degree $2$
Conductor $4925$
Sign $-1$
Analytic cond. $39.3263$
Root an. cond. $6.27107$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.93·2-s − 0.393·3-s + 1.75·4-s + 0.762·6-s − 4.57·7-s + 0.481·8-s − 2.84·9-s − 2.65·11-s − 0.689·12-s + 6.10·13-s + 8.85·14-s − 4.43·16-s − 3.76·17-s + 5.51·18-s − 1.25·19-s + 1.79·21-s + 5.14·22-s + 8.79·23-s − 0.189·24-s − 11.8·26-s + 2.30·27-s − 8.00·28-s − 3.88·29-s − 4.36·31-s + 7.62·32-s + 1.04·33-s + 7.29·34-s + ⋯
L(s)  = 1  − 1.36·2-s − 0.227·3-s + 0.875·4-s + 0.311·6-s − 1.72·7-s + 0.170·8-s − 0.948·9-s − 0.801·11-s − 0.198·12-s + 1.69·13-s + 2.36·14-s − 1.10·16-s − 0.913·17-s + 1.29·18-s − 0.288·19-s + 0.392·21-s + 1.09·22-s + 1.83·23-s − 0.0387·24-s − 2.31·26-s + 0.442·27-s − 1.51·28-s − 0.720·29-s − 0.783·31-s + 1.34·32-s + 0.182·33-s + 1.25·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4925\)    =    \(5^{2} \cdot 197\)
Sign: $-1$
Analytic conductor: \(39.3263\)
Root analytic conductor: \(6.27107\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
197 \( 1 - T \)
good2 \( 1 + 1.93T + 2T^{2} \)
3 \( 1 + 0.393T + 3T^{2} \)
7 \( 1 + 4.57T + 7T^{2} \)
11 \( 1 + 2.65T + 11T^{2} \)
13 \( 1 - 6.10T + 13T^{2} \)
17 \( 1 + 3.76T + 17T^{2} \)
19 \( 1 + 1.25T + 19T^{2} \)
23 \( 1 - 8.79T + 23T^{2} \)
29 \( 1 + 3.88T + 29T^{2} \)
31 \( 1 + 4.36T + 31T^{2} \)
37 \( 1 - 2.74T + 37T^{2} \)
41 \( 1 - 2.33T + 41T^{2} \)
43 \( 1 + 6.44T + 43T^{2} \)
47 \( 1 - 0.0382T + 47T^{2} \)
53 \( 1 - 5.36T + 53T^{2} \)
59 \( 1 + 4.00T + 59T^{2} \)
61 \( 1 - 14.5T + 61T^{2} \)
67 \( 1 - 13.5T + 67T^{2} \)
71 \( 1 + 0.772T + 71T^{2} \)
73 \( 1 - 11.9T + 73T^{2} \)
79 \( 1 + 14.2T + 79T^{2} \)
83 \( 1 + 10.2T + 83T^{2} \)
89 \( 1 - 5.99T + 89T^{2} \)
97 \( 1 + 12.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.226941250497167976600033414437, −7.11678377184883781104172684956, −6.68586192240100697051777816328, −5.96217595274541023465402628428, −5.19543602572875450510220208611, −3.91408077849314882809727692623, −3.12786162217130342047456352035, −2.28699540722660831141221637238, −0.878802522521460609329094736442, 0, 0.878802522521460609329094736442, 2.28699540722660831141221637238, 3.12786162217130342047456352035, 3.91408077849314882809727692623, 5.19543602572875450510220208611, 5.96217595274541023465402628428, 6.68586192240100697051777816328, 7.11678377184883781104172684956, 8.226941250497167976600033414437

Graph of the $Z$-function along the critical line