Properties

Label 2-4925-1.1-c1-0-219
Degree $2$
Conductor $4925$
Sign $-1$
Analytic cond. $39.3263$
Root an. cond. $6.27107$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.29·2-s − 1.51·3-s − 0.329·4-s + 1.96·6-s + 2.88·7-s + 3.01·8-s − 0.691·9-s + 5.91·11-s + 0.500·12-s + 2.82·13-s − 3.72·14-s − 3.23·16-s − 2.25·17-s + 0.893·18-s + 4.30·19-s − 4.38·21-s − 7.64·22-s − 3.09·23-s − 4.57·24-s − 3.65·26-s + 5.60·27-s − 0.950·28-s − 5.99·29-s − 1.34·31-s − 1.84·32-s − 8.98·33-s + 2.91·34-s + ⋯
L(s)  = 1  − 0.913·2-s − 0.877·3-s − 0.164·4-s + 0.801·6-s + 1.09·7-s + 1.06·8-s − 0.230·9-s + 1.78·11-s + 0.144·12-s + 0.784·13-s − 0.996·14-s − 0.808·16-s − 0.546·17-s + 0.210·18-s + 0.987·19-s − 0.956·21-s − 1.62·22-s − 0.646·23-s − 0.933·24-s − 0.716·26-s + 1.07·27-s − 0.179·28-s − 1.11·29-s − 0.240·31-s − 0.325·32-s − 1.56·33-s + 0.499·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4925\)    =    \(5^{2} \cdot 197\)
Sign: $-1$
Analytic conductor: \(39.3263\)
Root analytic conductor: \(6.27107\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
197 \( 1 - T \)
good2 \( 1 + 1.29T + 2T^{2} \)
3 \( 1 + 1.51T + 3T^{2} \)
7 \( 1 - 2.88T + 7T^{2} \)
11 \( 1 - 5.91T + 11T^{2} \)
13 \( 1 - 2.82T + 13T^{2} \)
17 \( 1 + 2.25T + 17T^{2} \)
19 \( 1 - 4.30T + 19T^{2} \)
23 \( 1 + 3.09T + 23T^{2} \)
29 \( 1 + 5.99T + 29T^{2} \)
31 \( 1 + 1.34T + 31T^{2} \)
37 \( 1 + 11.3T + 37T^{2} \)
41 \( 1 + 2.35T + 41T^{2} \)
43 \( 1 + 11.1T + 43T^{2} \)
47 \( 1 - 0.476T + 47T^{2} \)
53 \( 1 + 6.34T + 53T^{2} \)
59 \( 1 - 11.3T + 59T^{2} \)
61 \( 1 - 8.01T + 61T^{2} \)
67 \( 1 + 10.1T + 67T^{2} \)
71 \( 1 + 9.71T + 71T^{2} \)
73 \( 1 + 7.56T + 73T^{2} \)
79 \( 1 + 3.49T + 79T^{2} \)
83 \( 1 - 7.43T + 83T^{2} \)
89 \( 1 - 3.98T + 89T^{2} \)
97 \( 1 + 13.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.164021932385721722944278609348, −7.14947698082662138730179085043, −6.62663954554026893042129079018, −5.65822330675074277324793652412, −5.07183212008672946225819272406, −4.22713332662194653402422710695, −3.51088377459680543414182417246, −1.71472949812181859656132800615, −1.29931826457089701616564039439, 0, 1.29931826457089701616564039439, 1.71472949812181859656132800615, 3.51088377459680543414182417246, 4.22713332662194653402422710695, 5.07183212008672946225819272406, 5.65822330675074277324793652412, 6.62663954554026893042129079018, 7.14947698082662138730179085043, 8.164021932385721722944278609348

Graph of the $Z$-function along the critical line