L(s) = 1 | − 0.949·2-s + 1.30·3-s − 1.09·4-s − 1.23·6-s + 1.82·7-s + 2.94·8-s − 1.30·9-s + 3.24·11-s − 1.42·12-s + 1.15·13-s − 1.73·14-s − 0.596·16-s − 3.53·17-s + 1.24·18-s − 2.07·19-s + 2.37·21-s − 3.07·22-s + 2.93·23-s + 3.82·24-s − 1.09·26-s − 5.60·27-s − 2.00·28-s − 5.23·29-s − 10.0·31-s − 5.31·32-s + 4.21·33-s + 3.35·34-s + ⋯ |
L(s) = 1 | − 0.671·2-s + 0.750·3-s − 0.549·4-s − 0.504·6-s + 0.691·7-s + 1.04·8-s − 0.436·9-s + 0.977·11-s − 0.412·12-s + 0.320·13-s − 0.464·14-s − 0.149·16-s − 0.856·17-s + 0.293·18-s − 0.476·19-s + 0.518·21-s − 0.656·22-s + 0.612·23-s + 0.780·24-s − 0.215·26-s − 1.07·27-s − 0.379·28-s − 0.972·29-s − 1.79·31-s − 0.940·32-s + 0.734·33-s + 0.575·34-s + ⋯ |
Λ(s)=(=(4925s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4925s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 197 | 1−T |
good | 2 | 1+0.949T+2T2 |
| 3 | 1−1.30T+3T2 |
| 7 | 1−1.82T+7T2 |
| 11 | 1−3.24T+11T2 |
| 13 | 1−1.15T+13T2 |
| 17 | 1+3.53T+17T2 |
| 19 | 1+2.07T+19T2 |
| 23 | 1−2.93T+23T2 |
| 29 | 1+5.23T+29T2 |
| 31 | 1+10.0T+31T2 |
| 37 | 1−5.29T+37T2 |
| 41 | 1+10.0T+41T2 |
| 43 | 1−1.09T+43T2 |
| 47 | 1−1.47T+47T2 |
| 53 | 1+8.57T+53T2 |
| 59 | 1−3.47T+59T2 |
| 61 | 1+1.91T+61T2 |
| 67 | 1−1.85T+67T2 |
| 71 | 1−10.5T+71T2 |
| 73 | 1+0.875T+73T2 |
| 79 | 1+9.47T+79T2 |
| 83 | 1+2.08T+83T2 |
| 89 | 1−6.90T+89T2 |
| 97 | 1+8.32T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.183826695247824301430980530389, −7.43776229751824787481869474325, −6.67570888845430898188827482689, −5.66522309139040204204242296509, −4.85677318767974979936990592958, −4.03636015946896460209135731808, −3.41941659965215272570252974901, −2.12182768425154856188706450323, −1.43556047293116941897070793564, 0,
1.43556047293116941897070793564, 2.12182768425154856188706450323, 3.41941659965215272570252974901, 4.03636015946896460209135731808, 4.85677318767974979936990592958, 5.66522309139040204204242296509, 6.67570888845430898188827482689, 7.43776229751824787481869474325, 8.183826695247824301430980530389