Properties

Label 2-4925-1.1-c1-0-242
Degree $2$
Conductor $4925$
Sign $-1$
Analytic cond. $39.3263$
Root an. cond. $6.27107$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.949·2-s + 1.30·3-s − 1.09·4-s − 1.23·6-s + 1.82·7-s + 2.94·8-s − 1.30·9-s + 3.24·11-s − 1.42·12-s + 1.15·13-s − 1.73·14-s − 0.596·16-s − 3.53·17-s + 1.24·18-s − 2.07·19-s + 2.37·21-s − 3.07·22-s + 2.93·23-s + 3.82·24-s − 1.09·26-s − 5.60·27-s − 2.00·28-s − 5.23·29-s − 10.0·31-s − 5.31·32-s + 4.21·33-s + 3.35·34-s + ⋯
L(s)  = 1  − 0.671·2-s + 0.750·3-s − 0.549·4-s − 0.504·6-s + 0.691·7-s + 1.04·8-s − 0.436·9-s + 0.977·11-s − 0.412·12-s + 0.320·13-s − 0.464·14-s − 0.149·16-s − 0.856·17-s + 0.293·18-s − 0.476·19-s + 0.518·21-s − 0.656·22-s + 0.612·23-s + 0.780·24-s − 0.215·26-s − 1.07·27-s − 0.379·28-s − 0.972·29-s − 1.79·31-s − 0.940·32-s + 0.734·33-s + 0.575·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4925\)    =    \(5^{2} \cdot 197\)
Sign: $-1$
Analytic conductor: \(39.3263\)
Root analytic conductor: \(6.27107\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
197 \( 1 - T \)
good2 \( 1 + 0.949T + 2T^{2} \)
3 \( 1 - 1.30T + 3T^{2} \)
7 \( 1 - 1.82T + 7T^{2} \)
11 \( 1 - 3.24T + 11T^{2} \)
13 \( 1 - 1.15T + 13T^{2} \)
17 \( 1 + 3.53T + 17T^{2} \)
19 \( 1 + 2.07T + 19T^{2} \)
23 \( 1 - 2.93T + 23T^{2} \)
29 \( 1 + 5.23T + 29T^{2} \)
31 \( 1 + 10.0T + 31T^{2} \)
37 \( 1 - 5.29T + 37T^{2} \)
41 \( 1 + 10.0T + 41T^{2} \)
43 \( 1 - 1.09T + 43T^{2} \)
47 \( 1 - 1.47T + 47T^{2} \)
53 \( 1 + 8.57T + 53T^{2} \)
59 \( 1 - 3.47T + 59T^{2} \)
61 \( 1 + 1.91T + 61T^{2} \)
67 \( 1 - 1.85T + 67T^{2} \)
71 \( 1 - 10.5T + 71T^{2} \)
73 \( 1 + 0.875T + 73T^{2} \)
79 \( 1 + 9.47T + 79T^{2} \)
83 \( 1 + 2.08T + 83T^{2} \)
89 \( 1 - 6.90T + 89T^{2} \)
97 \( 1 + 8.32T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.183826695247824301430980530389, −7.43776229751824787481869474325, −6.67570888845430898188827482689, −5.66522309139040204204242296509, −4.85677318767974979936990592958, −4.03636015946896460209135731808, −3.41941659965215272570252974901, −2.12182768425154856188706450323, −1.43556047293116941897070793564, 0, 1.43556047293116941897070793564, 2.12182768425154856188706450323, 3.41941659965215272570252974901, 4.03636015946896460209135731808, 4.85677318767974979936990592958, 5.66522309139040204204242296509, 6.67570888845430898188827482689, 7.43776229751824787481869474325, 8.183826695247824301430980530389

Graph of the $Z$-function along the critical line