L(s) = 1 | − 0.321·2-s + 2.86·3-s − 1.89·4-s − 0.920·6-s − 0.829·7-s + 1.25·8-s + 5.18·9-s − 1.61·11-s − 5.42·12-s − 3.76·13-s + 0.266·14-s + 3.38·16-s − 2.25·17-s − 1.66·18-s + 5.21·19-s − 2.37·21-s + 0.520·22-s + 0.268·23-s + 3.58·24-s + 1.21·26-s + 6.24·27-s + 1.57·28-s − 6.37·29-s + 0.201·31-s − 3.59·32-s − 4.62·33-s + 0.725·34-s + ⋯ |
L(s) = 1 | − 0.227·2-s + 1.65·3-s − 0.948·4-s − 0.375·6-s − 0.313·7-s + 0.443·8-s + 1.72·9-s − 0.487·11-s − 1.56·12-s − 1.04·13-s + 0.0713·14-s + 0.847·16-s − 0.547·17-s − 0.393·18-s + 1.19·19-s − 0.517·21-s + 0.110·22-s + 0.0559·23-s + 0.732·24-s + 0.237·26-s + 1.20·27-s + 0.297·28-s − 1.18·29-s + 0.0362·31-s − 0.636·32-s − 0.805·33-s + 0.124·34-s + ⋯ |
Λ(s)=(=(4925s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4925s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 197 | 1−T |
good | 2 | 1+0.321T+2T2 |
| 3 | 1−2.86T+3T2 |
| 7 | 1+0.829T+7T2 |
| 11 | 1+1.61T+11T2 |
| 13 | 1+3.76T+13T2 |
| 17 | 1+2.25T+17T2 |
| 19 | 1−5.21T+19T2 |
| 23 | 1−0.268T+23T2 |
| 29 | 1+6.37T+29T2 |
| 31 | 1−0.201T+31T2 |
| 37 | 1+7.50T+37T2 |
| 41 | 1−2.01T+41T2 |
| 43 | 1+8.49T+43T2 |
| 47 | 1−1.06T+47T2 |
| 53 | 1−10.6T+53T2 |
| 59 | 1+12.4T+59T2 |
| 61 | 1−1.31T+61T2 |
| 67 | 1+2.57T+67T2 |
| 71 | 1−6.89T+71T2 |
| 73 | 1−4.02T+73T2 |
| 79 | 1−12.1T+79T2 |
| 83 | 1+7.56T+83T2 |
| 89 | 1+8.82T+89T2 |
| 97 | 1−1.91T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.937881611201998708239402733640, −7.52901608853947672807117139903, −6.81483201885149868803583984628, −5.44589242574628705027085981739, −4.86549821908378579745718996839, −3.92132254390429415216292343705, −3.31103747073471707301262430071, −2.51732644497890736495429499493, −1.54472551587583614713312110723, 0,
1.54472551587583614713312110723, 2.51732644497890736495429499493, 3.31103747073471707301262430071, 3.92132254390429415216292343705, 4.86549821908378579745718996839, 5.44589242574628705027085981739, 6.81483201885149868803583984628, 7.52901608853947672807117139903, 7.937881611201998708239402733640