L(s) = 1 | − 5-s + 7-s + 9-s + 19-s − 31-s − 35-s − 41-s − 45-s − 2·47-s + 59-s + 63-s − 2·67-s + 71-s + 81-s − 95-s − 97-s − 101-s + 103-s + 107-s − 109-s − 113-s + ⋯ |
L(s) = 1 | − 5-s + 7-s + 9-s + 19-s − 31-s − 35-s − 41-s − 45-s − 2·47-s + 59-s + 63-s − 2·67-s + 71-s + 81-s − 95-s − 97-s − 101-s + 103-s + 107-s − 109-s − 113-s + ⋯ |
Λ(s)=(=(496s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(496s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
496
= 24⋅31
|
Sign: |
1
|
Analytic conductor: |
0.247536 |
Root analytic conductor: |
0.497530 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ496(433,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 496, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.8739657799 |
L(21) |
≈ |
0.8739657799 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 31 | 1+T |
good | 3 | (1−T)(1+T) |
| 5 | 1+T+T2 |
| 7 | 1−T+T2 |
| 11 | (1−T)(1+T) |
| 13 | (1−T)(1+T) |
| 17 | (1−T)(1+T) |
| 19 | 1−T+T2 |
| 23 | (1−T)(1+T) |
| 29 | (1−T)(1+T) |
| 37 | (1−T)(1+T) |
| 41 | 1+T+T2 |
| 43 | (1−T)(1+T) |
| 47 | (1+T)2 |
| 53 | (1−T)(1+T) |
| 59 | 1−T+T2 |
| 61 | (1−T)(1+T) |
| 67 | (1+T)2 |
| 71 | 1−T+T2 |
| 73 | (1−T)(1+T) |
| 79 | (1−T)(1+T) |
| 83 | (1−T)(1+T) |
| 89 | (1−T)(1+T) |
| 97 | 1+T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.33979621220307494142617341998, −10.35092728363533814002009073535, −9.400971048775264223122950405864, −8.236781727676124108403907950421, −7.64178938780781159262121842857, −6.82862860558713448622581211010, −5.30668591867096172288592059861, −4.43474446882544503532194136997, −3.44767844354801433253755389737, −1.61544784124339313944370287833,
1.61544784124339313944370287833, 3.44767844354801433253755389737, 4.43474446882544503532194136997, 5.30668591867096172288592059861, 6.82862860558713448622581211010, 7.64178938780781159262121842857, 8.236781727676124108403907950421, 9.400971048775264223122950405864, 10.35092728363533814002009073535, 11.33979621220307494142617341998