L(s) = 1 | − 5-s + 7-s + 9-s + 19-s − 31-s − 35-s − 41-s − 45-s − 2·47-s + 59-s + 63-s − 2·67-s + 71-s + 81-s − 95-s − 97-s − 101-s + 103-s + 107-s − 109-s − 113-s + ⋯ |
L(s) = 1 | − 5-s + 7-s + 9-s + 19-s − 31-s − 35-s − 41-s − 45-s − 2·47-s + 59-s + 63-s − 2·67-s + 71-s + 81-s − 95-s − 97-s − 101-s + 103-s + 107-s − 109-s − 113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8739657799\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8739657799\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 31 | \( 1 + T \) |
good | 3 | \( ( 1 - T )( 1 + T ) \) |
| 5 | \( 1 + T + T^{2} \) |
| 7 | \( 1 - T + T^{2} \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 + T )^{2} \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( 1 - T + T^{2} \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 + T )^{2} \) |
| 71 | \( 1 - T + T^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.33979621220307494142617341998, −10.35092728363533814002009073535, −9.400971048775264223122950405864, −8.236781727676124108403907950421, −7.64178938780781159262121842857, −6.82862860558713448622581211010, −5.30668591867096172288592059861, −4.43474446882544503532194136997, −3.44767844354801433253755389737, −1.61544784124339313944370287833,
1.61544784124339313944370287833, 3.44767844354801433253755389737, 4.43474446882544503532194136997, 5.30668591867096172288592059861, 6.82862860558713448622581211010, 7.64178938780781159262121842857, 8.236781727676124108403907950421, 9.400971048775264223122950405864, 10.35092728363533814002009073535, 11.33979621220307494142617341998