L(s) = 1 | + (−1 + i)2-s + (−6 − 6i)3-s + 14i·4-s + (20 − 15i)5-s + 12·6-s + (−26 + 26i)7-s + (−30 − 30i)8-s − 9i·9-s + (−5 + 35i)10-s − 8·11-s + (84 − 84i)12-s + (139 + 139i)13-s − 52i·14-s + (−210 − 30i)15-s − 164·16-s + (−1 + i)17-s + ⋯ |
L(s) = 1 | + (−0.250 + 0.250i)2-s + (−0.666 − 0.666i)3-s + 0.875i·4-s + (0.800 − 0.599i)5-s + 0.333·6-s + (−0.530 + 0.530i)7-s + (−0.468 − 0.468i)8-s − 0.111i·9-s + (−0.0500 + 0.350i)10-s − 0.0661·11-s + (0.583 − 0.583i)12-s + (0.822 + 0.822i)13-s − 0.265i·14-s + (−0.933 − 0.133i)15-s − 0.640·16-s + (−0.00346 + 0.00346i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 - 0.0898i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.995 - 0.0898i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.669000 + 0.0301007i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.669000 + 0.0301007i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-20 + 15i)T \) |
good | 2 | \( 1 + (1 - i)T - 16iT^{2} \) |
| 3 | \( 1 + (6 + 6i)T + 81iT^{2} \) |
| 7 | \( 1 + (26 - 26i)T - 2.40e3iT^{2} \) |
| 11 | \( 1 + 8T + 1.46e4T^{2} \) |
| 13 | \( 1 + (-139 - 139i)T + 2.85e4iT^{2} \) |
| 17 | \( 1 + (1 - i)T - 8.35e4iT^{2} \) |
| 19 | \( 1 + 180iT - 1.30e5T^{2} \) |
| 23 | \( 1 + (166 + 166i)T + 2.79e5iT^{2} \) |
| 29 | \( 1 - 480iT - 7.07e5T^{2} \) |
| 31 | \( 1 - 572T + 9.23e5T^{2} \) |
| 37 | \( 1 + (251 - 251i)T - 1.87e6iT^{2} \) |
| 41 | \( 1 + 1.68e3T + 2.82e6T^{2} \) |
| 43 | \( 1 + (-1.47e3 - 1.47e3i)T + 3.41e6iT^{2} \) |
| 47 | \( 1 + (-2.47e3 + 2.47e3i)T - 4.87e6iT^{2} \) |
| 53 | \( 1 + (3.33e3 + 3.33e3i)T + 7.89e6iT^{2} \) |
| 59 | \( 1 - 3.66e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 - 1.59e3T + 1.38e7T^{2} \) |
| 67 | \( 1 + (-874 + 874i)T - 2.01e7iT^{2} \) |
| 71 | \( 1 + 6.06e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (791 + 791i)T + 2.83e7iT^{2} \) |
| 79 | \( 1 + 9.12e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 + (-5.65e3 - 5.65e3i)T + 4.74e7iT^{2} \) |
| 89 | \( 1 + 2.16e3iT - 6.27e7T^{2} \) |
| 97 | \( 1 + (6.55e3 - 6.55e3i)T - 8.85e7iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.89913624452159933516741890958, −22.15309634886302607912586360934, −20.88647769646167381974628978295, −18.50275335165158129876739462903, −17.40897162649728375522062915889, −16.16030001239991370174501813980, −13.23394830568435968840208799345, −12.03131972356520577702595263087, −8.992004666314940419028087030184, −6.43446901279239483854321391270,
5.87345398363083830302364819598, 9.959603234283732465813800828395, 10.84818845483526284000633729910, 13.78514932864529845373034703274, 15.64547499604769225484994205118, 17.41568124951225360560227193675, 18.91495198703454935137597208810, 20.63801047044014262264701318701, 22.28910821114774274241655878508, 23.26434389688325556266865988942