Properties

Label 2-50-5.4-c11-0-12
Degree $2$
Conductor $50$
Sign $-0.894 + 0.447i$
Analytic cond. $38.4171$
Root an. cond. $6.19815$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 32i·2-s − 141. i·3-s − 1.02e3·4-s − 4.53e3·6-s − 8.55e4i·7-s + 3.27e4i·8-s + 1.57e5·9-s + 7.67e5·11-s + 1.45e5i·12-s + 2.20e5i·13-s − 2.73e6·14-s + 1.04e6·16-s + 9.30e5i·17-s − 5.02e6i·18-s + 1.77e7·19-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.336i·3-s − 0.5·4-s − 0.238·6-s − 1.92i·7-s + 0.353i·8-s + 0.886·9-s + 1.43·11-s + 0.168i·12-s + 0.165i·13-s − 1.36·14-s + 0.250·16-s + 0.158i·17-s − 0.626i·18-s + 1.64·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50\)    =    \(2 \cdot 5^{2}\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(38.4171\)
Root analytic conductor: \(6.19815\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: $\chi_{50} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 50,\ (\ :11/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(6)\) \(\approx\) \(0.506147 - 2.14407i\)
\(L(\frac12)\) \(\approx\) \(0.506147 - 2.14407i\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 32iT \)
5 \( 1 \)
good3 \( 1 + 141. iT - 1.77e5T^{2} \)
7 \( 1 + 8.55e4iT - 1.97e9T^{2} \)
11 \( 1 - 7.67e5T + 2.85e11T^{2} \)
13 \( 1 - 2.20e5iT - 1.79e12T^{2} \)
17 \( 1 - 9.30e5iT - 3.42e13T^{2} \)
19 \( 1 - 1.77e7T + 1.16e14T^{2} \)
23 \( 1 + 3.99e7iT - 9.52e14T^{2} \)
29 \( 1 + 7.68e7T + 1.22e16T^{2} \)
31 \( 1 + 2.96e7T + 2.54e16T^{2} \)
37 \( 1 + 5.40e7iT - 1.77e17T^{2} \)
41 \( 1 - 1.26e8T + 5.50e17T^{2} \)
43 \( 1 + 2.88e8iT - 9.29e17T^{2} \)
47 \( 1 - 1.57e9iT - 2.47e18T^{2} \)
53 \( 1 + 4.09e9iT - 9.26e18T^{2} \)
59 \( 1 + 3.77e9T + 3.01e19T^{2} \)
61 \( 1 + 9.64e9T + 4.35e19T^{2} \)
67 \( 1 - 1.63e10iT - 1.22e20T^{2} \)
71 \( 1 - 1.03e10T + 2.31e20T^{2} \)
73 \( 1 - 4.27e9iT - 3.13e20T^{2} \)
79 \( 1 - 1.96e10T + 7.47e20T^{2} \)
83 \( 1 + 1.35e10iT - 1.28e21T^{2} \)
89 \( 1 + 2.25e10T + 2.77e21T^{2} \)
97 \( 1 - 1.08e11iT - 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.68359625854004849864126778390, −11.46936216035145096291583878827, −10.36050374896010381237996729370, −9.412286448099405512169171674916, −7.62717640895437629849894616454, −6.68739769356415000333783625127, −4.46322747310214952894127242970, −3.61169204392278969436927999702, −1.48337359815727072701304889333, −0.73979535553064904710692539300, 1.51668681609890157242233417884, 3.43710618960350994203144341868, 5.05347098119580774683187870377, 6.09389380125278572618151989466, 7.51696931984512297197563233149, 9.112281229427588618138833445905, 9.530438071092830605519095711025, 11.57636863911212645061299825601, 12.43619589698574426378025521426, 13.87809222820084793150289553547

Graph of the $Z$-function along the critical line