L(s) = 1 | + (0.309 + 0.951i)2-s + (1.09 − 0.792i)3-s + (−0.809 + 0.587i)4-s + (−2.15 − 0.587i)5-s + (1.09 + 0.792i)6-s − 0.833·7-s + (−0.809 − 0.587i)8-s + (−0.365 + 1.12i)9-s + (−0.107 − 2.23i)10-s + (0.257 + 0.792i)11-s + (−0.416 + 1.28i)12-s + (1.41 − 4.34i)13-s + (−0.257 − 0.792i)14-s + (−2.81 + 1.06i)15-s + (0.309 − 0.951i)16-s + (−4.41 − 3.20i)17-s + ⋯ |
L(s) = 1 | + (0.218 + 0.672i)2-s + (0.629 − 0.457i)3-s + (−0.404 + 0.293i)4-s + (−0.964 − 0.262i)5-s + (0.445 + 0.323i)6-s − 0.314·7-s + (−0.286 − 0.207i)8-s + (−0.121 + 0.374i)9-s + (−0.0340 − 0.706i)10-s + (0.0776 + 0.238i)11-s + (−0.120 + 0.370i)12-s + (0.391 − 1.20i)13-s + (−0.0688 − 0.211i)14-s + (−0.727 + 0.275i)15-s + (0.0772 − 0.237i)16-s + (−1.06 − 0.777i)17-s + ⋯ |
Λ(s)=(=(50s/2ΓC(s)L(s)(0.890−0.455i)Λ(2−s)
Λ(s)=(=(50s/2ΓC(s+1/2)L(s)(0.890−0.455i)Λ(1−s)
Degree: |
2 |
Conductor: |
50
= 2⋅52
|
Sign: |
0.890−0.455i
|
Analytic conductor: |
0.399252 |
Root analytic conductor: |
0.631863 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ50(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 50, ( :1/2), 0.890−0.455i)
|
Particular Values
L(1) |
≈ |
0.884801+0.213399i |
L(21) |
≈ |
0.884801+0.213399i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.309−0.951i)T |
| 5 | 1+(2.15+0.587i)T |
good | 3 | 1+(−1.09+0.792i)T+(0.927−2.85i)T2 |
| 7 | 1+0.833T+7T2 |
| 11 | 1+(−0.257−0.792i)T+(−8.89+6.46i)T2 |
| 13 | 1+(−1.41+4.34i)T+(−10.5−7.64i)T2 |
| 17 | 1+(4.41+3.20i)T+(5.25+16.1i)T2 |
| 19 | 1+(−7.00−5.08i)T+(5.87+18.0i)T2 |
| 23 | 1+(−1.09−3.35i)T+(−18.6+13.5i)T2 |
| 29 | 1+(2.64−1.92i)T+(8.96−27.5i)T2 |
| 31 | 1+(4.85+3.52i)T+(9.57+29.4i)T2 |
| 37 | 1+(−2.26+6.95i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−0.576+1.77i)T+(−33.1−24.0i)T2 |
| 43 | 1+1.63T+43T2 |
| 47 | 1+(−0.674+0.489i)T+(14.5−44.6i)T2 |
| 53 | 1+(5.19−3.77i)T+(16.3−50.4i)T2 |
| 59 | 1+(−4.18+12.8i)T+(−47.7−34.6i)T2 |
| 61 | 1+(−1.81−5.59i)T+(−49.3+35.8i)T2 |
| 67 | 1+(1.21+0.881i)T+(20.7+63.7i)T2 |
| 71 | 1+(−1.91+1.38i)T+(21.9−67.5i)T2 |
| 73 | 1+(1.02+3.16i)T+(−59.0+42.9i)T2 |
| 79 | 1+(4.18−3.03i)T+(24.4−75.1i)T2 |
| 83 | 1+(−9.97−7.25i)T+(25.6+78.9i)T2 |
| 89 | 1+(2.16+6.66i)T+(−72.0+52.3i)T2 |
| 97 | 1+(8.97−6.51i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.71722160923512237471653514967, −14.59849972747249108909689432482, −13.45810619216296466924212719357, −12.60639995224576316036787102613, −11.19477810397215719145609273934, −9.299343603771264096174189573705, −7.995955762103588709137229109224, −7.31881562226818636948363357107, −5.34535994999870021536395595042, −3.44266246576126949283524513030,
3.17459120572987956606991684069, 4.36420157987861449824327394935, 6.71674076957440159812442047772, 8.573252849835968570618815211044, 9.475582019359727795610839772923, 11.04574701177117349738944016356, 11.83181206204205240403486297782, 13.26576119433431699757004728734, 14.40079464679263799472507203816, 15.34091117881981262133671140841