Dirichlet series
L(s) = 1 | − 5.24e5·4-s + 1.73e9·9-s + 7.09e9·11-s + 2.06e11·16-s − 7.66e11·19-s − 3.33e14·29-s + 8.36e14·31-s − 9.12e14·36-s − 6.25e15·41-s − 3.72e15·44-s + 4.17e16·49-s + 5.09e16·59-s − 1.55e17·61-s − 7.20e16·64-s − 5.88e16·71-s + 4.01e17·76-s + 2.47e18·79-s + 8.99e17·81-s − 8.34e18·89-s + 1.23e19·99-s − 3.73e19·101-s − 1.15e20·109-s + 1.74e20·116-s − 1.11e20·121-s − 4.38e20·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 4-s + 1.49·9-s + 0.907·11-s + 3/4·16-s − 0.544·19-s − 4.26·29-s + 5.68·31-s − 1.49·36-s − 2.98·41-s − 0.907·44-s + 3.66·49-s + 0.765·59-s − 1.70·61-s − 1/2·64-s − 0.152·71-s + 0.544·76-s + 2.32·79-s + 0.665·81-s − 2.52·89-s + 1.35·99-s − 3.39·101-s − 5.10·109-s + 4.26·116-s − 1.82·121-s − 5.68·124-s + ⋯ |
Functional equation
Invariants
Degree: | \(8\) |
Conductor: | \(6250000\) = \(2^{4} \cdot 5^{8}\) |
Sign: | $1$ |
Analytic conductor: | \(1.71328\times 10^{8}\) |
Root analytic conductor: | \(10.6961\) |
Motivic weight: | \(19\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((8,\ 6250000,\ (\ :19/2, 19/2, 19/2, 19/2),\ 1)\) |
Particular Values
\(L(10)\) | \(\approx\) | \(5.008620131\times10^{-6}\) |
\(L(\frac12)\) | \(\approx\) | \(5.008620131\times10^{-6}\) |
\(L(\frac{21}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | $C_2$ | \( ( 1 + p^{18} T^{2} )^{2} \) |
5 | \( 1 \) | ||
good | 3 | $D_4\times C_2$ | \( 1 - 1739709980 T^{2} + 2918124642930982 p^{6} T^{4} - 1739709980 p^{38} T^{6} + p^{76} T^{8} \) |
7 | $D_4\times C_2$ | \( 1 - 41738972809617740 T^{2} + \)\(28\!\cdots\!98\)\( p^{4} T^{4} - 41738972809617740 p^{38} T^{6} + p^{76} T^{8} \) | |
11 | $D_{4}$ | \( ( 1 - 3549480144 T + 6780691163172962306 p T^{2} - 3549480144 p^{19} T^{3} + p^{38} T^{4} )^{2} \) | |
13 | $D_4\times C_2$ | \( 1 + 2645742594230176660 p^{2} T^{2} + \)\(57\!\cdots\!78\)\( p^{4} T^{4} + 2645742594230176660 p^{40} T^{6} + p^{76} T^{8} \) | |
17 | $D_4\times C_2$ | \( 1 - \)\(13\!\cdots\!60\)\( p^{2} T^{2} + \)\(81\!\cdots\!58\)\( p^{4} T^{4} - \)\(13\!\cdots\!60\)\( p^{40} T^{6} + p^{76} T^{8} \) | |
19 | $D_{4}$ | \( ( 1 + 383076809800 T + \)\(37\!\cdots\!58\)\( T^{2} + 383076809800 p^{19} T^{3} + p^{38} T^{4} )^{2} \) | |
23 | $D_4\times C_2$ | \( 1 - \)\(19\!\cdots\!20\)\( T^{2} + \)\(20\!\cdots\!38\)\( T^{4} - \)\(19\!\cdots\!20\)\( p^{38} T^{6} + p^{76} T^{8} \) | |
29 | $D_{4}$ | \( ( 1 + 166587684602220 T + \)\(15\!\cdots\!38\)\( T^{2} + 166587684602220 p^{19} T^{3} + p^{38} T^{4} )^{2} \) | |
31 | $D_{4}$ | \( ( 1 - 418151119038664 T + \)\(87\!\cdots\!66\)\( T^{2} - 418151119038664 p^{19} T^{3} + p^{38} T^{4} )^{2} \) | |
37 | $D_4\times C_2$ | \( 1 - \)\(14\!\cdots\!00\)\( T^{2} + \)\(10\!\cdots\!58\)\( T^{4} - \)\(14\!\cdots\!00\)\( p^{38} T^{6} + p^{76} T^{8} \) | |
41 | $D_{4}$ | \( ( 1 + 3127192714527996 T + \)\(48\!\cdots\!26\)\( T^{2} + 3127192714527996 p^{19} T^{3} + p^{38} T^{4} )^{2} \) | |
43 | $D_4\times C_2$ | \( 1 - \)\(80\!\cdots\!80\)\( T^{2} + \)\(19\!\cdots\!98\)\( T^{4} - \)\(80\!\cdots\!80\)\( p^{38} T^{6} + p^{76} T^{8} \) | |
47 | $D_4\times C_2$ | \( 1 - \)\(19\!\cdots\!60\)\( T^{2} + \)\(15\!\cdots\!78\)\( T^{4} - \)\(19\!\cdots\!60\)\( p^{38} T^{6} + p^{76} T^{8} \) | |
53 | $D_4\times C_2$ | \( 1 - \)\(21\!\cdots\!40\)\( T^{2} + \)\(18\!\cdots\!78\)\( T^{4} - \)\(21\!\cdots\!40\)\( p^{38} T^{6} + p^{76} T^{8} \) | |
59 | $D_{4}$ | \( ( 1 - 25484316660294360 T + \)\(89\!\cdots\!78\)\( T^{2} - 25484316660294360 p^{19} T^{3} + p^{38} T^{4} )^{2} \) | |
61 | $D_{4}$ | \( ( 1 + 77840503559636276 T + \)\(11\!\cdots\!26\)\( T^{2} + 77840503559636276 p^{19} T^{3} + p^{38} T^{4} )^{2} \) | |
67 | $D_4\times C_2$ | \( 1 - \)\(10\!\cdots\!00\)\( T^{2} + \)\(73\!\cdots\!18\)\( T^{4} - \)\(10\!\cdots\!00\)\( p^{38} T^{6} + p^{76} T^{8} \) | |
71 | $D_{4}$ | \( ( 1 + 29427662567526696 T + \)\(15\!\cdots\!66\)\( T^{2} + 29427662567526696 p^{19} T^{3} + p^{38} T^{4} )^{2} \) | |
73 | $D_4\times C_2$ | \( 1 + \)\(12\!\cdots\!20\)\( T^{2} + \)\(63\!\cdots\!38\)\( T^{4} + \)\(12\!\cdots\!20\)\( p^{38} T^{6} + p^{76} T^{8} \) | |
79 | $D_{4}$ | \( ( 1 - 1235969155825112720 T + \)\(13\!\cdots\!38\)\( T^{2} - 1235969155825112720 p^{19} T^{3} + p^{38} T^{4} )^{2} \) | |
83 | $D_4\times C_2$ | \( 1 - \)\(32\!\cdots\!80\)\( T^{2} + \)\(12\!\cdots\!18\)\( T^{4} - \)\(32\!\cdots\!80\)\( p^{38} T^{6} + p^{76} T^{8} \) | |
89 | $D_{4}$ | \( ( 1 + 4172929077000032820 T + \)\(20\!\cdots\!18\)\( T^{2} + 4172929077000032820 p^{19} T^{3} + p^{38} T^{4} )^{2} \) | |
97 | $D_4\times C_2$ | \( 1 - \)\(73\!\cdots\!20\)\( T^{2} + \)\(21\!\cdots\!78\)\( T^{4} - \)\(73\!\cdots\!20\)\( p^{38} T^{6} + p^{76} T^{8} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−7.71151566435928984158117542335, −7.61833166595229432950179686904, −7.20000621384617264478028679674, −6.77086773895658191399135554089, −6.70632109226115886085407918240, −6.20242912785246667214964559843, −6.18375373971857637843275841181, −5.53979235609469217217540497385, −5.23836378639303074355942443853, −4.99645635141766035807604281441, −4.82158112378960269952407416452, −4.07133480292001590559103890102, −3.97684252973236866686426127814, −3.95129645516118252116849557836, −3.93569651948522497922963900315, −3.10604014386202536621977364290, −2.73242016353571775501212404654, −2.51719797748099171836364028877, −2.19666260302353954073040025187, −1.48044444954281655570949487487, −1.45955206519320708873931429349, −1.21312530731795357928093852069, −0.996540123565983341334007289321, −0.43118998061997429984035201457, −0.00028001691630226852488572902, 0.00028001691630226852488572902, 0.43118998061997429984035201457, 0.996540123565983341334007289321, 1.21312530731795357928093852069, 1.45955206519320708873931429349, 1.48044444954281655570949487487, 2.19666260302353954073040025187, 2.51719797748099171836364028877, 2.73242016353571775501212404654, 3.10604014386202536621977364290, 3.93569651948522497922963900315, 3.95129645516118252116849557836, 3.97684252973236866686426127814, 4.07133480292001590559103890102, 4.82158112378960269952407416452, 4.99645635141766035807604281441, 5.23836378639303074355942443853, 5.53979235609469217217540497385, 6.18375373971857637843275841181, 6.20242912785246667214964559843, 6.70632109226115886085407918240, 6.77086773895658191399135554089, 7.20000621384617264478028679674, 7.61833166595229432950179686904, 7.71151566435928984158117542335