L(s) = 1 | − 512i·2-s − 1.73e4i·3-s − 2.62e5·4-s − 8.88e6·6-s − 5.57e7i·7-s + 1.34e8i·8-s + 8.61e8·9-s − 5.35e9·11-s + 4.54e9i·12-s + 6.91e10i·13-s − 2.85e10·14-s + 6.87e10·16-s − 8.22e11i·17-s − 4.40e11i·18-s + 3.19e11·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.508i·3-s − 0.5·4-s − 0.359·6-s − 0.522i·7-s + 0.353i·8-s + 0.741·9-s − 0.685·11-s + 0.254i·12-s + 1.80i·13-s − 0.369·14-s + 0.250·16-s − 1.68i·17-s − 0.524i·18-s + 0.227·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(20-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+19/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(10)\) |
\(\approx\) |
\(1.730862605\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.730862605\) |
\(L(\frac{21}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 512iT \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 1.73e4iT - 1.16e9T^{2} \) |
| 7 | \( 1 + 5.57e7iT - 1.13e16T^{2} \) |
| 11 | \( 1 + 5.35e9T + 6.11e19T^{2} \) |
| 13 | \( 1 - 6.91e10iT - 1.46e21T^{2} \) |
| 17 | \( 1 + 8.22e11iT - 2.39e23T^{2} \) |
| 19 | \( 1 - 3.19e11T + 1.97e24T^{2} \) |
| 23 | \( 1 - 8.01e12iT - 7.46e25T^{2} \) |
| 29 | \( 1 + 2.41e13T + 6.10e27T^{2} \) |
| 31 | \( 1 - 2.07e14T + 2.16e28T^{2} \) |
| 37 | \( 1 - 2.90e14iT - 6.24e29T^{2} \) |
| 41 | \( 1 - 9.57e14T + 4.39e30T^{2} \) |
| 43 | \( 1 + 5.00e15iT - 1.08e31T^{2} \) |
| 47 | \( 1 - 3.13e14iT - 5.88e31T^{2} \) |
| 53 | \( 1 + 1.16e16iT - 5.77e32T^{2} \) |
| 59 | \( 1 - 2.11e16T + 4.42e33T^{2} \) |
| 61 | \( 1 - 4.20e16T + 8.34e33T^{2} \) |
| 67 | \( 1 + 2.45e17iT - 4.95e34T^{2} \) |
| 71 | \( 1 + 3.98e17T + 1.49e35T^{2} \) |
| 73 | \( 1 + 5.53e17iT - 2.53e35T^{2} \) |
| 79 | \( 1 - 1.76e18T + 1.13e36T^{2} \) |
| 83 | \( 1 - 1.89e18iT - 2.90e36T^{2} \) |
| 89 | \( 1 + 4.56e18T + 1.09e37T^{2} \) |
| 97 | \( 1 + 1.22e19iT - 5.60e37T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.40603885863003381459702730950, −10.07944784570353570333446431724, −9.189879040668043274111929115413, −7.61833166595229432950179686904, −6.77086773895658191399135554089, −4.99645635141766035807604281441, −3.97684252973236866686426127814, −2.51719797748099171836364028877, −1.48044444954281655570949487487, −0.43118998061997429984035201457,
0.996540123565983341334007289321, 2.73242016353571775501212404654, 4.07133480292001590559103890102, 5.23836378639303074355942443853, 6.18375373971857637843275841181, 7.71151566435928984158117542335, 8.522880989973663034171146681333, 9.982121620271125376420680747901, 10.64413176245405877011843200851, 12.54737843735406583259789300338