L(s) = 1 | + 1.02e3i·2-s + 1.94e5i·3-s − 1.04e6·4-s − 1.99e8·6-s − 9.63e8i·7-s − 1.07e9i·8-s − 2.74e10·9-s + 6.10e10·11-s − 2.04e11i·12-s + 5.25e10i·13-s + 9.86e11·14-s + 1.09e12·16-s + 1.13e13i·17-s − 2.81e13i·18-s + 4.53e13·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.90i·3-s − 0.5·4-s − 1.34·6-s − 1.28i·7-s − 0.353i·8-s − 2.62·9-s + 0.710·11-s − 0.952i·12-s + 0.105i·13-s + 0.911·14-s + 0.250·16-s + 1.36i·17-s − 1.85i·18-s + 1.69·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(11)\) |
\(\approx\) |
\(1.882480787\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.882480787\) |
\(L(\frac{23}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 1.02e3iT \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 1.94e5iT - 1.04e10T^{2} \) |
| 7 | \( 1 + 9.63e8iT - 5.58e17T^{2} \) |
| 11 | \( 1 - 6.10e10T + 7.40e21T^{2} \) |
| 13 | \( 1 - 5.25e10iT - 2.47e23T^{2} \) |
| 17 | \( 1 - 1.13e13iT - 6.90e25T^{2} \) |
| 19 | \( 1 - 4.53e13T + 7.14e26T^{2} \) |
| 23 | \( 1 - 2.47e14iT - 3.94e28T^{2} \) |
| 29 | \( 1 - 2.58e15T + 5.13e30T^{2} \) |
| 31 | \( 1 + 1.35e15T + 2.08e31T^{2} \) |
| 37 | \( 1 - 1.35e16iT - 8.55e32T^{2} \) |
| 41 | \( 1 - 6.72e16T + 7.38e33T^{2} \) |
| 43 | \( 1 + 3.70e16iT - 2.00e34T^{2} \) |
| 47 | \( 1 + 3.17e17iT - 1.30e35T^{2} \) |
| 53 | \( 1 - 1.44e18iT - 1.62e36T^{2} \) |
| 59 | \( 1 - 1.08e18T + 1.54e37T^{2} \) |
| 61 | \( 1 + 1.59e17T + 3.10e37T^{2} \) |
| 67 | \( 1 + 8.71e18iT - 2.22e38T^{2} \) |
| 71 | \( 1 + 3.06e19T + 7.52e38T^{2} \) |
| 73 | \( 1 - 2.36e19iT - 1.34e39T^{2} \) |
| 79 | \( 1 - 9.35e19T + 7.08e39T^{2} \) |
| 83 | \( 1 + 2.00e20iT - 1.99e40T^{2} \) |
| 89 | \( 1 + 3.85e19T + 8.65e40T^{2} \) |
| 97 | \( 1 - 5.46e20iT - 5.27e41T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.68614096579788702706273841717, −10.53766194634199089108870417186, −9.812361664183155257591147292372, −8.861464334424107123779851677522, −7.56807413602107299623169453603, −6.06874814747995062398886215064, −4.94809238988077000184099397883, −3.97708691260810712916228304919, −3.39887912351226729155351268830, −1.00831111670991470962563323825,
0.46893672753631565036018035023, 1.24326415165762654494283528632, 2.39036132116305903645881987980, 2.97682548156345517873023580680, 5.16567123559486270438894205788, 6.21421893882950211177726046440, 7.34273953035467541447688631624, 8.498377351967123532740545818640, 9.378191078775384167874399191674, 11.39017850972601505305373646038