L(s) = 1 | + 1.02e3i·2-s + 4.79e4i·3-s − 1.04e6·4-s − 4.90e7·6-s − 6.67e8i·7-s − 1.07e9i·8-s + 8.16e9·9-s − 1.26e11·11-s − 5.02e10i·12-s + 9.12e11i·13-s + 6.83e11·14-s + 1.09e12·16-s − 8.60e12i·17-s + 8.35e12i·18-s + 6.93e12·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.468i·3-s − 0.5·4-s − 0.331·6-s − 0.893i·7-s − 0.353i·8-s + 0.780·9-s − 1.47·11-s − 0.234i·12-s + 1.83i·13-s + 0.631·14-s + 0.250·16-s − 1.03i·17-s + 0.551i·18-s + 0.259·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(11)\) |
\(\approx\) |
\(0.6518505926\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6518505926\) |
\(L(\frac{23}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 1.02e3iT \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 4.79e4iT - 1.04e10T^{2} \) |
| 7 | \( 1 + 6.67e8iT - 5.58e17T^{2} \) |
| 11 | \( 1 + 1.26e11T + 7.40e21T^{2} \) |
| 13 | \( 1 - 9.12e11iT - 2.47e23T^{2} \) |
| 17 | \( 1 + 8.60e12iT - 6.90e25T^{2} \) |
| 19 | \( 1 - 6.93e12T + 7.14e26T^{2} \) |
| 23 | \( 1 + 3.30e14iT - 3.94e28T^{2} \) |
| 29 | \( 1 - 3.90e15T + 5.13e30T^{2} \) |
| 31 | \( 1 - 3.32e15T + 2.08e31T^{2} \) |
| 37 | \( 1 - 4.33e16iT - 8.55e32T^{2} \) |
| 41 | \( 1 + 9.56e16T + 7.38e33T^{2} \) |
| 43 | \( 1 + 7.81e16iT - 2.00e34T^{2} \) |
| 47 | \( 1 - 2.03e17iT - 1.30e35T^{2} \) |
| 53 | \( 1 - 1.42e18iT - 1.62e36T^{2} \) |
| 59 | \( 1 + 2.28e18T + 1.54e37T^{2} \) |
| 61 | \( 1 + 5.32e18T + 3.10e37T^{2} \) |
| 67 | \( 1 - 1.31e19iT - 2.22e38T^{2} \) |
| 71 | \( 1 + 2.98e19T + 7.52e38T^{2} \) |
| 73 | \( 1 - 1.37e18iT - 1.34e39T^{2} \) |
| 79 | \( 1 + 1.74e19T + 7.08e39T^{2} \) |
| 83 | \( 1 - 3.75e19iT - 1.99e40T^{2} \) |
| 89 | \( 1 + 2.43e20T + 8.65e40T^{2} \) |
| 97 | \( 1 - 1.80e20iT - 5.27e41T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.09660433003739205630031575721, −10.56250413421860032654403605073, −9.857530635919108203776160903299, −8.564248077451609442806864292319, −7.31040638030936086077765291846, −6.56350959882920939534522970272, −4.74810983611518853019230784575, −4.43335434554314663760205284043, −2.78200163797293416087360571467, −1.12818701742824319067264261484,
0.14147877934534836486653220296, 1.30605383770036417843164441849, 2.42762114164923525205461769265, 3.34037971709274239522858428802, 4.99743225430063739331878990306, 5.87460520655683148254581752535, 7.63621171318291900881168115488, 8.377688139741328559725422142690, 9.950445786858392836858713688328, 10.62419085883714195499801277892