Properties

Label 2-50-1.1-c25-0-14
Degree $2$
Conductor $50$
Sign $-1$
Analytic cond. $197.998$
Root an. cond. $14.0711$
Motivic weight $25$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.09e3·2-s − 6.18e5·3-s + 1.67e7·4-s + 2.53e9·6-s − 4.78e10·7-s − 6.87e10·8-s − 4.64e11·9-s + 3.58e11·11-s − 1.03e13·12-s − 7.76e13·13-s + 1.96e14·14-s + 2.81e14·16-s − 1.50e15·17-s + 1.90e15·18-s + 4.83e15·19-s + 2.96e16·21-s − 1.46e15·22-s − 2.59e16·23-s + 4.24e16·24-s + 3.18e17·26-s + 8.11e17·27-s − 8.03e17·28-s + 9.30e17·29-s + 3.10e18·31-s − 1.15e18·32-s − 2.21e17·33-s + 6.16e18·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.671·3-s + 0.5·4-s + 0.475·6-s − 1.30·7-s − 0.353·8-s − 0.548·9-s + 0.0344·11-s − 0.335·12-s − 0.924·13-s + 0.924·14-s + 0.250·16-s − 0.627·17-s + 0.387·18-s + 0.501·19-s + 0.878·21-s − 0.0243·22-s − 0.246·23-s + 0.237·24-s + 0.653·26-s + 1.04·27-s − 0.653·28-s + 0.488·29-s + 0.709·31-s − 0.176·32-s − 0.0231·33-s + 0.443·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50\)    =    \(2 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(197.998\)
Root analytic conductor: \(14.0711\)
Motivic weight: \(25\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 50,\ (\ :25/2),\ -1)\)

Particular Values

\(L(13)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4.09e3T \)
5 \( 1 \)
good3 \( 1 + 6.18e5T + 8.47e11T^{2} \)
7 \( 1 + 4.78e10T + 1.34e21T^{2} \)
11 \( 1 - 3.58e11T + 1.08e26T^{2} \)
13 \( 1 + 7.76e13T + 7.05e27T^{2} \)
17 \( 1 + 1.50e15T + 5.77e30T^{2} \)
19 \( 1 - 4.83e15T + 9.30e31T^{2} \)
23 \( 1 + 2.59e16T + 1.10e34T^{2} \)
29 \( 1 - 9.30e17T + 3.63e36T^{2} \)
31 \( 1 - 3.10e18T + 1.92e37T^{2} \)
37 \( 1 - 4.54e19T + 1.60e39T^{2} \)
41 \( 1 - 1.02e20T + 2.08e40T^{2} \)
43 \( 1 + 4.58e20T + 6.86e40T^{2} \)
47 \( 1 + 1.51e21T + 6.34e41T^{2} \)
53 \( 1 - 2.00e21T + 1.27e43T^{2} \)
59 \( 1 - 2.00e22T + 1.86e44T^{2} \)
61 \( 1 + 2.40e22T + 4.29e44T^{2} \)
67 \( 1 - 5.68e22T + 4.48e45T^{2} \)
71 \( 1 - 2.06e22T + 1.91e46T^{2} \)
73 \( 1 - 3.20e23T + 3.82e46T^{2} \)
79 \( 1 + 4.28e23T + 2.75e47T^{2} \)
83 \( 1 - 1.11e24T + 9.48e47T^{2} \)
89 \( 1 - 1.75e24T + 5.42e48T^{2} \)
97 \( 1 - 1.28e25T + 4.66e49T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14237902409061979480134098402, −9.437248672857131945375115053346, −8.184871932867858853054326109000, −6.82910743420443807420426943298, −6.16564578476933178523469655979, −4.91687072089426933719963715038, −3.28761364998945215331863348565, −2.34899124927623604317280616706, −0.75051750453046800229361706214, 0, 0.75051750453046800229361706214, 2.34899124927623604317280616706, 3.28761364998945215331863348565, 4.91687072089426933719963715038, 6.16564578476933178523469655979, 6.82910743420443807420426943298, 8.184871932867858853054326109000, 9.437248672857131945375115053346, 10.14237902409061979480134098402

Graph of the $Z$-function along the critical line