Properties

Label 2-50-1.1-c27-0-24
Degree $2$
Conductor $50$
Sign $1$
Analytic cond. $230.927$
Root an. cond. $15.1963$
Motivic weight $27$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.19e3·2-s + 5.48e6·3-s + 6.71e7·4-s − 4.49e10·6-s + 8.15e10·7-s − 5.49e11·8-s + 2.25e13·9-s + 1.33e13·11-s + 3.68e14·12-s − 5.64e14·13-s − 6.68e14·14-s + 4.50e15·16-s + 1.28e16·17-s − 1.84e17·18-s + 3.07e17·19-s + 4.47e17·21-s − 1.09e17·22-s + 1.99e18·23-s − 3.01e18·24-s + 4.62e18·26-s + 8.17e19·27-s + 5.47e18·28-s − 8.80e19·29-s + 2.22e20·31-s − 3.68e19·32-s + 7.35e19·33-s − 1.05e20·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.98·3-s + 0.5·4-s − 1.40·6-s + 0.318·7-s − 0.353·8-s + 2.95·9-s + 0.116·11-s + 0.993·12-s − 0.517·13-s − 0.225·14-s + 0.250·16-s + 0.315·17-s − 2.08·18-s + 1.67·19-s + 0.632·21-s − 0.0827·22-s + 0.826·23-s − 0.702·24-s + 0.365·26-s + 3.88·27-s + 0.159·28-s − 1.59·29-s + 1.63·31-s − 0.176·32-s + 0.232·33-s − 0.223·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(28-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+27/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50\)    =    \(2 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(230.927\)
Root analytic conductor: \(15.1963\)
Motivic weight: \(27\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 50,\ (\ :27/2),\ 1)\)

Particular Values

\(L(14)\) \(\approx\) \(4.838573487\)
\(L(\frac12)\) \(\approx\) \(4.838573487\)
\(L(\frac{29}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8.19e3T \)
5 \( 1 \)
good3 \( 1 - 5.48e6T + 7.62e12T^{2} \)
7 \( 1 - 8.15e10T + 6.57e22T^{2} \)
11 \( 1 - 1.33e13T + 1.31e28T^{2} \)
13 \( 1 + 5.64e14T + 1.19e30T^{2} \)
17 \( 1 - 1.28e16T + 1.66e33T^{2} \)
19 \( 1 - 3.07e17T + 3.36e34T^{2} \)
23 \( 1 - 1.99e18T + 5.84e36T^{2} \)
29 \( 1 + 8.80e19T + 3.05e39T^{2} \)
31 \( 1 - 2.22e20T + 1.84e40T^{2} \)
37 \( 1 - 1.61e21T + 2.19e42T^{2} \)
41 \( 1 + 9.68e21T + 3.50e43T^{2} \)
43 \( 1 + 9.33e21T + 1.26e44T^{2} \)
47 \( 1 + 1.20e22T + 1.40e45T^{2} \)
53 \( 1 - 8.75e21T + 3.59e46T^{2} \)
59 \( 1 - 3.03e23T + 6.50e47T^{2} \)
61 \( 1 - 1.15e24T + 1.59e48T^{2} \)
67 \( 1 - 1.86e24T + 2.01e49T^{2} \)
71 \( 1 + 8.93e24T + 9.63e49T^{2} \)
73 \( 1 - 2.18e25T + 2.04e50T^{2} \)
79 \( 1 - 1.05e25T + 1.72e51T^{2} \)
83 \( 1 + 2.25e25T + 6.53e51T^{2} \)
89 \( 1 + 1.78e26T + 4.30e52T^{2} \)
97 \( 1 + 8.87e26T + 4.39e53T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.980776586076371331808288903361, −9.503942110243971386433206820636, −8.443569144796550680047038976029, −7.71218886389618433273048877266, −6.91564270823109594260183730863, −4.93116096784803496001811203679, −3.54449076715405071809449859382, −2.80973894543944553299525949270, −1.79172454223024456472182810996, −0.961111471046115933469520989046, 0.961111471046115933469520989046, 1.79172454223024456472182810996, 2.80973894543944553299525949270, 3.54449076715405071809449859382, 4.93116096784803496001811203679, 6.91564270823109594260183730863, 7.71218886389618433273048877266, 8.443569144796550680047038976029, 9.503942110243971386433206820636, 9.980776586076371331808288903361

Graph of the $Z$-function along the critical line